

Statistical Analysis of NPP transients: LBLOCA in a PWR; Parametric, non-parametric methods and EBEPU

Cesar Queral, Kevin Fernández-Cosials

Universidad Politécnica de Madrid

Texas A&M University

Seminarium Zakładu Energetyki Jądrowej i Analiz Środowiska, Jan 2022

1. Plant Model

- 2. Base Case CL-LBLOCA
- 3. BEPU CL-LBLOCA
 - 3.1 Non parametric analysis
 - 3.2 Parametric Analysis

3.3 Sample discussion and Comparison Non- parametric .vs. Parametric Statistics

- 4. Extended-BEPU
- 5. Conclusions

1. Plant Model

Reference NPP TRACE model:

3-LOOP PWR WESTINGHOUSE, 3000 MWt

- 279 Thermal Hydraulic components:
 - 2 VESSELSs
 - 73 PIPEs
 - 43 TEEs
 - 54 VALVEs
 - 3 PUMPs

- 12 FILL
- 33 BREAK
- 56 HS
- 3 POWER

- Control Systems:
 - 740 SIGNAL VARIABLES
 - 1671 CONTROL BLOCK
 - 58 TRIP

1. BE core model

2. Base Case: CL-LBLOCA

2/2 effective ACC - 2/2 LPSI

2. Base Case: CL-LBLOCA

2/2 effective ACC - 2/2 LPS

- RG-1.157, Best-Estimate Calculation of Emergency Core Cooling System Performance (1989)
- RG-1.203 Transient and Accident Analysis Methods (2005).

Best Estimate Plus Uncertainties : CL-LBLOCA

Best Estimate Plus Uncertainties : CL-LBLOCA

3. BEPU: Methodology

Best Estimate Plus Uncertainties : CL-LBLOCA

- Identification of up to 40 parameters in previous LBLOCA studies, including:
 - Ranges of uncertainty.
 - Probability Density Functions (PDF).
- Identification of LBLOCA phenomena: LBLOCA-PIRT (NUREG/CR-6744).
- Selection of parameters and phenomena by means of previous importance analyses.
- New fuel rod parameters due to the new **TRACE** thermomechanical models.
- 29 uncertain parameters selection.

Break DC Power DHeat PPF Forced Convection HTC Film Boiling HTC **Transition Boiling** CHF ACC Pressure LPSI injection Factor **RCP** Broken **RCP** Intact Gap HTC **Cladding Inner Radius Cladding Thickness** Pellet Radius Pellet Dish Depth Pellet shoulder Spring Volume **Plenum Height Fuel Density** KUO2 **Burst Temperature** M-W Reaction Containment Press. **ACC** Temperature **Gap Pressure Burst Strain** Oxide Layer

3. BEPU: Uncertain Parameters

Characterization of uncertain parameters and Monte-Carlo sampling by means of **DAKOTA** code coupled to **TRACE** code in **SNAP** platform.

- Characterization of uncertain parameters in SNAP platform:
 - Definition of the variable in **Numerics** option.
 - Model input parameters via "Select a Shared Value".

▼ Fuel Properties								
Rod Plenum Height	Rod_Plenum_Height(0.19456) (m	4۵ (?	?				
Pellet Shoulder Width	Shoulder_Width(1.625E-3) (m	4۵ (2	?				
Pellet Dish Depth	Pellet_Dish_Depth(1.2E-4) (m	4۵ (٩	🕄 Se	elect a Shared Real			×
Pellet Height	9.83E-3 (m	4۵ (ę					_
Spring Volume Fraction	Spring_Volume_Fraction(0.11) (-	۹⊳ (ę	<	Name one>	Current V	Engineering Unit	-
Sintering Temperature	1872.59 (K		ę	₿.	R ACC_Line_Kfact	1.0E-20	No Unit (-)	
Maximum Density Change	105.0 (kg/m ³	۵۵ (ę	<u>п</u>	BreakCD1 BreakCD2	1.0	No Unit (-)	-11
PuO2 Fraction	0.0 (-		ę	8 I.	C Decay_Heat	1.0	No Unit (-)	
Fuel Density	Fuel_density(0.93) (-		ę	<mark>В</mark> Т	Fuel_density	0.93	No Unit (-)	
Gap-gas Definition	Pressure	•	¢		RPKF2x10	1.043	No Unit (-)	
					RPKF2x20	1.067	No Unit (-)	
Average Gap-gas Pressure	Pgap_1x20(2.588E6) (Pa		Ľ		RPKF2x21	1.045	No Unit (-)	_

• Internal models: 37 Sensitivity coefficients available in Model Options.

E Model Options		P		+		-		
			[1011] dFFBHTCWallSV	[3] Factor	SV1011(1.0))W/(m²K)	All	Dispersed Flow Film Boiling heat transfer coefficie
Namelist Variables	Valid values	1 % -	[1012] subcHTCWallSV	[0] Off	0.0	W/(m ² K)	All	Subcooled boiling heat transfer coefficient
User Defined Units	< none > E 🕾	2	[1013] nuclHTCWallSV	[0] Off	0.0	W/(m²K)	All	Nucleate boiling heat transfer coefficient
Timestep Data	[4] Timesteps E	2	[1014] dnbchfWallSV	[3] Factor	SV1014(1.0) W/m²	All	Departure from nucleate boiling / critical heat flux'
Trip Initiated Timestep Data	[0] Timesteps E 🕈	28	[1015] transHTCWallSV	[3] Factor	SV1015(1.0) W/(m²K)	All	Transition boiling heat transfer coefficient
Mixed Numerics	0 of 177 Enabled 💽 🕾	3 ?	[1016] gapCondSV	[3] Factor	SV1016(1.0)) W/(m*K)	All	Gap Conductance coefficient
System Gas/Liquids	None 🖵 💌 🖤	2	[1017] fuelCndBBSV	[3] Factor	SV1017(1.0))W/(m*K)	All	Fuel Thermal Conductivity
			[1018] cladMWRxnRteSV	[3] Factor	SV1018(1.0)) m²/s	All	Cladding Metal-Water Reaction Rate coefficient.
Noncond. Gas Option	[1] Air	3 😵	[1019] rodIntPressSV	[0] Off	0.0	Pa	All	Rod Internal (Gap) Pressure coefficient
Model Validation	[10] Active Tests: Loop Check, Noncondensable 💽 🕾	8	[1020] burstTempor	10101	SV1020(1.0))K	All	Burst Temperature coefficient
Initial Condition Sets	[0] Initial Conditions Sets E	2	ototrainSV	[3] Factor	SV1021(1.0))-	All	Burst Strain coefficient
Sensitivity Coefficients	[37] coefficients available		[1000] wellDreat()/	101.0#			AII	Well Drog coefficient

Monte Carlo sampling: n=1020

Non-parametric statistics results:

- 1. Wald criterium
- 2. Binomial distribution with confidence interval.

3. BEPU: Methodology

Wilks/Wald statistics: Easy Example

Wilks/Wald statistics:

- Monte-Carlo random sampling of input and internal models parameters (defined by their PDFs) with **DAKOTA** code.
- Number of code calculations **N**:
 - Depends on the probability content γ, confidence level β of the acceptance criteria (PCT, LMO) and order p. Number of bounds (upper and/or lower) = d. R = n^o of FOM
 - Independent of the number of uncertain parameters
- BEPU LBLOCA analysis: $\gamma/\beta = 95/95$, PCT and LMO as output parameters, one sided-tolerance. 93 (p=1) cases are enough to verify the 95/95 acceptance criteria.

Non-parametric statistics results. Wald criterium.

- Non-parametric statistics results. Binomial distribution with confidence interval
- Binomial distribution. PCT or LMO

 acceptance criterion:
 Failure/no-failure.

 The 95% confidence interval has been obtained by means of the Clopper-Pearson.
- Equivalent to Wilks one-sided.
- Joint Core Damage Probability with 95% confidence interval:

Mean = 0.98E-1%

Upper 95% = 5.5E-1%

• **Parametric statistics** results. It is quite difficult to obtain a single JPDF for PCT and LMO

- The goodness of fit (**GOF**) tests measure the compatibility of a random sample with a theoretical probability distribution function.
- MC results have been measured against **3 GOF tests** and up to **60 different distributions**:
 - Kolmogorov-Smirnov
 - Anderson-Darling
 - Chi-Squared
- Anderson-Darling criterion is used as benchmark due to the test giving <u>more weight to</u> <u>the tails</u> than the Kolmogorov-Smirnov and Chi-Squared tests.
 - More adequate to determine exceedance probabilities.

3.1 BEPU: Parametric Statistics - PCT

Parametric statistics results: Probability Density Functions

Figure: (Left) PCT histogram and associated PDF. (Right) PCT CDF

- PCT Monte Carlo results fit to the following PDF:
 - PCT (**Johnson SU**): P(PCT>1477K)= **2.7E-2**% (<5%).

But this value needs a Confidence interval.

3.1 BEPU: Parametric Statistics - LMO

Parametric statistics results: Probability Density Functions

Figure: (Left) LMO histogram and associated PDF. (Right) LMO CDF

- LMO Montecarlo results fit to the following PDF:
 - LMO (**Dagum**): P(LMO>17%)=**1.5E-5**% (<5%).

But this value needs a Confidence interval.

3.1 BEPU: Parametric Statistics

- Parametric statistics : Different Methods to obtain a confidence Interval.
 - Creating a p-box using confidence interval of the distribution parameters by:
 - 1. Using Wald confidence interval for distribution parameters
 - 2. Using the Likelihood Function to obtain distribution parameters confidence interval

Both methods are easily applicable **only for a limited set of distributions** (e.g. normal).

• Using the computationally demanding Bootstrap Method. (fully used in the present study)

3.1 BEPU: Parametric Statistics

Parametric statistics results: 500 Bootstrap Samples to obtain the confidence interval

Figure: CDF of the 500 Bootstrap Samples for PCT (left) and LMO (right)

- Upper confidence interval for PCT : 6.00E-02% for 95 % confidence
- Upper confidence interval for LMO: **1.02E-04%** for 95 % confidence

• Non-Parametric statistics results: Wald criterium

Joint Core Damage Probability < <u>7.8E-01%</u> with 95% CL

• Binomial distribution with 95% confidence interval (Clopper-Pearson)

Joint Core Damage Probability < <u>5.5E-01%</u> with 95 % CL

• **<u>Parametric statistics results</u>**: Probability Density Functions with Boostrap

Joint Core Damage Probability < <u>6.01E-02%</u> with 95% CL

Wald is conservative compared with parametric results

• Sample discussion: Parameters Convergence.

Convergence of Values across 70 -PCT -LMO the simulation 60 perature Std.Dev (%) 50 (%) MO Low order shows higher 30 variance in all parameters 20 0 50 100 400 650 700 750 800 850 900 950 1000 1050 150 200 250 300 350 450 500 550 600 Number of Simulations

Sample discussion: Parameters Convergence.

500 samples taken in random order (without substitution)

• Sample discussion: Parameters Convergence.

500 samples taken in random order (without substitution)

• Sample discussion: Parameters Convergence

Confidence interval for Wald bounding values can be obtained with Bootstrap approach.

Sample Discussion:

Evolution of the exceedance probability 95% confidence level with increasing number of simulations

Can methods from PSA

be integrated in DSA to

obtain deeper insights of

a NPP sequence?

4. EBEPU - Introduction

TABLE 1. OPTIONS FOR PERFORMING DETERMINISTIC SAFETY ANALYSIS

Option	Computer code Assumptions about type systems availability		Type of initial and boundary conditions			
1. Conservative	Conservative	Conservative	Conservative			
2. Combined	Best estimate	Conservative	Conservative			
 Best estimate plus uncertainty 	Best estimate	Conservative	Best estimate Partly most unfavourable conditions			
4. Realistic*	Best estimate	Best estimate	Best estimate			

Deterministic safety analysis for nuclear power plants. Specific Safety Guide No. SSG-2. IAEA 2019

4. EBEPU - Example

4. EBEPU

4. EBEPU

Non-Parametric Statistics

Parametric Statistics

4. EBEPU

FROM DSA BEPU

-

Sequence	Pseq	IE •Pseq [year ⁻¹]	100% Power Damage probability	CDF [year ⁻¹]
2ACC-2L 2ACC-1L 2ACC-0L 1ACC-2L 1ACC-1L 1ACC-1L 0ACC-0L 0ACC-2L 0ACC-1L	9.69E-01 3.00E-02 9.00E-04 2.58E-04 8.00E-06 2.40E-07 2.91E-05 9.00E-07 2.70E-08	1.11E-03 3.45E-05 1.03E-06 2.97E-07 9.20E-09 2.76E-10 3.34E-08 1.04E-09 3.11E-11	2.95E-02 2.95E-02 1.0 4.66E-02 1.02E-01 1.0 1.80E-01 5.40E-01	3.27E-05 1.02E-06 1.03E-06 1.38E-08 9.38E-10 2.76E-10 6.01E-09 5.62E-10 3.11E-11
No-recirc Total	6.41E-05 1.00E+00	7.31E-08 1.15E-03	1.0 3.04E-02	7.31E-08 3.49E-05

- The analyses performed have allowed to evaluate the new thermomechanical models included in **TRACE**.
- Results show the compliance with the **10 CFR 50.46** requirements for the PCT and LMO:
 - Non-parametric analysis proves the compliance with a 95/95 probability and confidence.
 - PCT and LMO PDFs obtained by means of parametric analyses show marginal probabilities of acceptance criteria exceedance.
- Employing Extended-BEPU technique to assess a transient can provide interesting outcomes not seen with just PSA or DSA.
- All these discussions can be seen in:

Reliability Engineering & System Safety Volume 205, January 2021, 107246

Application of Expanded Event Trees combined with uncertainty analysis methodologies

Annals of Nuclear Energy Volume 144, 1 September 2020, 107505

Statistical characterization of NPP transients: Application to PWR LBLOCA

LSEVIER

Reliability Engineering & System Safety Volume 193, January 2020, 106607

Uncertainty and sensitivity analysis of a PWR LOCA sequence using parametric and nonparametric methods

Statistical Analysis of NPP transients: LBLOCA in a PWR; Parametric, non-parametric methods and EBEPU

Cesar Queral, Kevin Fernández-Cosials

Universidad Politécnica de Madrid

Texas A&M University

Seminarium Zakładu Energetyki Jądrowej i Analiz Środowiska, Jan 2022

Extra Slides

