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NARSIS objectives

Natural hazards characterization, considering concomitant external
(simultaneous-yet-independent or cascading) events, and the correlation in
intra-event intensity parameters;

Fragility and functionality assessment of main critical NPPs' elements,
accounting for conjunct effects (including ageing effects) and
interdependencies under single or multiple external aggressions;

Risk integration combined with uncertainty characterization and
quantification, to allow efficient risks comparison and account for all possible
interactions and cascade effects;

Better processing/integration of expert-based information within PSA, through
modern uncertainty theories both to represent in flexible manner experts’
judgments and to aggregate them to be used in a comprehensive manner.
The proposed improvements to be tested and validated on simplified and real
NPP case studies. Demonstration supporting tools for operational & severe
accident management will be also provided.
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Multi-hazard framework (WP1)

= New approaches for characterization of potential physical threats at nuclear
installation exposed to different external natural hazards and scenarios, focusing on
some of them identified as priorities by the PSA End-Users community in the
ASAMPSA-E project: earthquakes, flooding, tsunamis and extreme weather.

Proposed methodology:

= Level O: Single hazard assessment through standard practice or improved methods
= Level 1: Multi-hazard assessment scoping through potential site-specific hazards

= Level 2: Multi-hazard interaction matrix and scoring

= Level 3: Modellability matrix

= Level 4: Quantitative analysis of multiple hazard probabilities
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- Provides basis for existing multi-hazard methods
- Single hazard and background analysis of existing sites
- Hazard methodology / 79 external hazards

- Decommissioned Site Analyses (Single hazards)
- Trino Vercellese independent hazard test cases
- Station correlatioan analyses [ Curve production

- Multi-scale &nalysis
- Decommissioned site analysis
- Station carrelatian analyses / Curve productian
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- Detailed GPUSPH analysis
- Sensitivity Analyses
- Mechanical models for analysis

- Aftershock analysis and methodolagy
- Vector-based metrics including CMS for sites
- Fault displacement. seismic source modelling
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Recommendation for regulators

The approach developed makes the multi-hazard assessment possible at the scale of a power
plant. Calibration for analysed NPP is needed.

The Level 0 (assessment of single hazards) is essential as it drives the quality and accuracy of
the rest of the methodology.

The hazard characterisation methods are very different, using deterministic or probabilistic
methods, with regards to the hazard type. The current methods applied for four natural
hazards: earthquake, tsunami, flooding and extreme weather.

Possible impact of non-stationarity of some extreme events (for example weather hazards
due to climate change).

The step from single to multi-hazard analysis involves the identification of secondary hazards
and the consideration of spatial or temporal interactions. The integrated framework enables
to check all the possible combinations of single hazards, to qualify different types of
interactions and to assess quantitatively (via the hazard interaction index), the credibility and
intensity of these interactions.

Uncertainty forms a major part of any result, given the large variability of events.
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Fragility analysis (WP2)

Developing innovative methods to increase the reliability or reduce the
uncertainties in the estimation of the responses of main NPP critical elements to
external threats.

Step 1: Identifying critical components of NPP

The PSA importance measure criteria used to identify candidate safety significant
SSC’s are:

— Sum of FV (Fussell-Vesely index) for all basic events modeling the SSC of interest,
including common cause failure (CCF) > 0.005

— Maximum of component basic event RAW (Risk Achievement Worth) > 2
— Maximum of applicable common cause basic events RAW > 20.

Fussell-Vesely Importance Measure is the probability, given that a critical failure has occurred, that at least
one minimal cut set containing a particular element contributed to that failure.

Risk Achievement Worth (RAW) is the increase in risk if the feature is assumed to be failed at all times



Fragility analysis (WP2)

Critical elements for Level 1 PSA:

I&C and switchgear cabinets/devices;

Fuel assembly spacer grids and, more generally, reactor pressure vessel internals: the
relevance of these elements is also confirmed by other case studies besides the one used for
the importance ranking in the project;

Distributed systems (HVAC, piping, cable raceways).

For Level 2 PSA, the following safety functions are identified as critical in decreasing order:

primary circuit depressurization systems,
active isolation of the reactor containment building,

passive reactor building resistance and leaktightness in severe accident conditions (pressure
and temperature),

depressurization of the reactor building (by a filtered containment venting system),

annulus venting system for NPP with double wall containment, auxiliary buildings filtration and
venting,

hydrogen risk management provisions.



Fragility analysis (WP2)

Step 2: Accounting for cumulative effects in fragility assessment
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Fragility analysis (WP2)

Step 3: Deriving vector-valued fragility functions
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Main findings

Carefully selected vector-IMs make excellent candidates in terms of IM sufficiency and

efficiency, when compared to scalar IMs.

Vector-valued fragility functions tend to generate less dispersion (i.e. aleatory uncertainty
due to record-to-record variability) than scalar-IM fragility curves: this difference may be
interpreted as a partial transfer from the record-to-record variability to an epistemic
uncertainty component that is related to the description of the seismic loading given the

hazard at the studied site.

The conditional spectrum method for the selection of input ground-motion records appears
to be compatible with the derivation of vector-based fragility functions, since the hazard
consistency is maintained throughout the scaling levels: such a framework is especially well

adapted when considering spectral accelerations at various periods as vector-IMs.
15



The Multi-risk integration framework for safety
analysis (WP3)
Improving the integration of external hazards and their consequences with existing

state-of-the-art risk assessment

Identifying the most influential sources of uncertainty and to prioritise those which
should be reduced accordingly

Proposed methodology: Bayesian Network including human and organisational aspects
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The Multi-risk integration framework for safety
analysis (WP3)
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Main findings

The advantages and challenges associated with the use of BNs, as compared to fault trees,
were demonstrated using the chosen NPP accident scenario.

The new approach to CCF modelling using BNs, based on correlation between component
failures, was shown to have advantages over conventional parametric models.

Within a multi-hazard risk problem, vector-based fragility of components was modelled
within BNs. This allows for the inclusion of more than one intensity measure for each hazard,
within a multi-hazard risk BN.

The BN was also used as a surrogate model for advanced numerical methods used in
reliability assessment of flood control dikes. Such surrogate BNs, modelling the reliability of
components/sub-systems, can ease computational demands and as well, provide a direct link
to a larger BN, estimating overall system risk.

The new BN-SLIM, developed for the estimation of human error probability, was shown to
compare favourably with existing methods.

A step-wise, iterative framework for multi-hazard risk integration, using BNs, was presented.
Using this framework, the technical and human BNs, with their respective developments and
features, were integrated under a single BN-based risk model.



Constraining uncertainties

* Constraining uncertainty in BN modeling: typical approach
is based on sensitivity functions for discrete BNs and on
partial derivatives for continuous BNs while new approach
is based on Boosted Beta Regression

e Constraining uncertainty in fragility assessment: combining
Artificial Neural Network, adaptive training algorithm and
amplification-factor-based construction of the likelihood
function

e Constraining uncertainty in expert-based information



Applying and comparing various approaches
for safety assessment (WP4)

 Development and application of model reduction strategies
for assessing the impact of external hazards on the fragility
of critical systems/components from a probabilistic
viewpoint.

* Applying and comparing new and existing methods for
deterministic, probabilistic and combined probabilistic-

deterministic safety analyses, for referential Generation-Ill
NPP.
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Applying and comparing various approaches
for safety assessment (WP4)

 New and existing methods for deterministic analysis in case
of severe accident;

* Fully probabilistic analysis (BBN), with BBN application and
comparison with a more traditional PSA approach based on
Fault Trees (FT) and Event Trees (ET) in case of single and
multiple hazard scenarios;

 Combined probabilistic-deterministic analysis (E-BEPU),
which was applied for the first time in safety analysis.

21
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E-BEPU: Extended Best Estimate Plus Uncertainty

E-BEPU allows for the
introduction of new
criteria oriented to
address better other
aspects of the plant
safety, such as defense-
in-depth or robustness
of the safety design
(mainly avoidance of
cliff-edges)
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Main findings

Multi-hazard modeling in traditional PSA is not
straightforward.

The adopted approach is strongly dependent on the PSA
tools applied.

Additional information on SSC behavior is needed when
external events are considered.

An increase of external hazards would harshly increase the
complexity of the modeling.



Comparison of BN and traditional PSA

For each FT, there is an equivalent BN. The inverse is not always true.

BNs provide an added advantage in fault diagnostics in that new evidence
can be easily incorporated into the model as Bayesian updating is inherent
to BNs.

Diagnostic inference in the BN enables a more direct evaluation of
individual component contribution to system failure than the cutset
approach adopted in fault tree analyses.

Unforeseen dependencies may be identified during fault diagnosis in BNs
as compared to fault tree analysis, where cutsets follow predetermined
paths to failure and provide no information about the occurrence or non-
occurrence of basic events that are not included in these cutsets.
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Comparison of BN and traditional PSA

Multi-state variables can more directly be incorporated into BNs. The
number of entries in conditional probability tables increases exponentially
with the number of states, making BN construction and computation hard.

BNs inherently consider statistical dependencies between variables.
Hence, the consideration of CCFs is easily included.

BNs can directly incorporate continuous random variables without the
need for additional modifications, as in the case of fault trees.

In BNs, logical interactions between events and components are not
visually represented as in fault trees, hidden within conditional probability.

For complex systems with increased common cause effects, BNs can grow
in size, making visualization and computations challenging. This is a
significant downside of BNs, as dependencies between components

become visually indecipherable. 2



Decision-Supporting tool for Severe Accident QE)) NCBJ
Management (WP5)

Developing a demonstrative decision support tool for severe
accident management, in order to make appropriate decisions in
a timely manner.

The tool SEVERA:

" interprets time series of measurements of important physical
parameters,

= provides relevant information that would help to understand
the state of NPP systems and possible development of the
accident, and

= assesses possible consequences of management actions in
terms of likelihood of radioactive releases to the environment.

28



SEVERA computer program R NCBJ
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7 Conclusions QE)) NCBJ

NARSIS methodology has been implemented in an open-source open-access software
tool, the NARSIS Multi-Hazard Explorer, proposing five successive levels for assessment,
to be used as part of the steps related to Initiating Events and Screening (deterministic
or probabilistic) analyses in extended PSA.

The benefits of using multiple IMs (referred to as vector-valued IMs) for fragility
assessment of SSC against single (earthquake) and multi-hazard natural events, were
investigated.

The methodologies and developments presented can all be used within a PSA. Each has
advantages and disadvantages, and this work adds to the available tools which can be
used to analyse and communicate on safety. Some methods (e.g. BNs) can be used as
advanced versions of standard tools, whereas others can be used to investigate specific
aspects and reduce uncertainties. Given the large variety of decision-making situations,
finding a single appropriate framework appears to be debatable, and it is beneficial to
take advantages of the strengths of multiple approaches to capture different types of

information and knowledge important to inform decision-making. .



7 Conclusions QE)) NCBJ

A novel model-order reduction technique was implemented for seismic fragility
assessment: the Proper Generalized Decomposition (PGD), combined with the Large
Time INcrement (LATIN) method, a general solving strategy for nonlinear problems in
mechanics made of an alternative sequence of nonlinear and linear stages.

SEVERA developed tool relies on the PSA techniques and current status of SAMGs for
extensive damage and severe accident management. Its DM process can be divided into
a typical operation cycle, starting with the observation and interpretation of the
measured parameters, then continuing with the assessment of the plant systems state
and the prediction of possible accident progressions, and finally ending with the
formulation of possible management/recovery actions and the assessment of their
effectiveness in terms of probabilities of radioactive release categories.
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