Benchmarking FRAT: Chinese code for TRISO fuel performance analysis

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Nairi Baghdasaryan

Division of Nuclear Energy and Environmental Studies

nairi.baghdasaryan@ncbj.gov.pl

Supervisor: Tomasz Kozlowski

Rzeczpospolita Polska

New reactor concepts and safety analyses for the Polish Nuclear Energy Program POWR.03.02.00-00.1005/17

SWIERK

- Introduction
- CRP-6 Benchmark
- Selected Cases
- About FRAT
- Results:
 - case 1
 - case 2
- Summary
- References



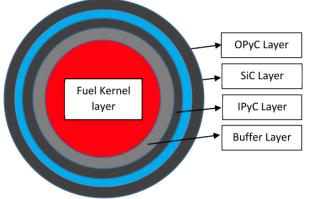
What is covered in fuel performance analysis:

- Pressure build-up in buffer layer
- Heat generation and transfer from the kernel
- Anisotropy effects
- Kernel migration
- Fission product build-up and release
- Chemical effects
- Thermomechanical behavior (irradiation induced)
- Fuel failure mechanisms and failure fraction

Questions need an answer:

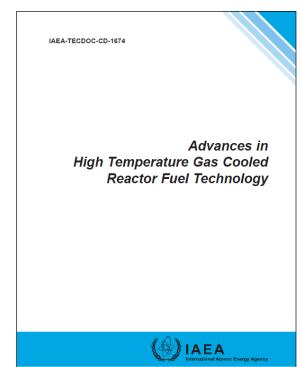
- What is the allowable max burnup level ?
- What are the optimal geometric and material properties ?
- How operational conditions affect of fuel performance ?
- How much radioactive material will go out from TRISO during operational/accidental conditions ?
- What is the failure fraction of the fuel particles?

Examples of various AGR-1 irradiated particle microstructures [2]


• Etc ...

Why quantifying uncertainties is important?

- Manufacturing source of uncertainties (geometry and materials)
- Model based uncertainties
- Many phenomena are cross-dependent
- Small uncertainty in one model can have a big impact on the accuracy of another model
- Is current design of TRISO the most optimal?
- Doing experiments are not cheap and not fast
- Even experiments are uncertain



A key part of CRP-6 includes benchmark calculations with fuel performance models under normal HTGR operating conditions. The normal operation benchmarking has been structured in two phases:

- Phase 1: a series of simplified analytical benchmarking problems have been established as a way to 'calibrate' the codes and/or models.
- Phase 2: the codes and/or models will be used to calculate more complicated benchmarks of actual experiments that have been completed and of planned experiments.

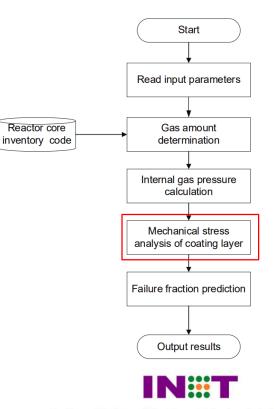
Total benchmarking problems: 13 Participating countries: USA (INL,GA), France, UK, Russia, Korea, Turkey

Advances in HTGR Reactor Fuel Technology," IAEA-TECDOC-CD-1674 [3]

Analytical Problems

	Case 5: TRISO	Case 6: TRISO	Case 7: TRISO
Parameter	350 μm kernel	500 µm kernel	High BAF
Oxygen to Uranium ratio	2	2	2
Carbon to Uranium ratio	0	0	0
U-235 enrichment (wt%)	10	10	10
Kernel diameter (µm)	350	500	500
Buffer thickness (µm)	100	100	100
IPyC thickness (µm)	40	40	40
SiC thickness (µm)	35	35	35
OPyC thickness (µm)	40	40	40
Kernel density (Mg/m ³)	10.8	10.8	10.8
Buffer density (Mg/m ³)	0.95	0.95	0.95
IPyC density (Mg/m ³)	1.9	1.9	1.9
SiC density (Mg/m ³)	3.20	3.20	3.20
OPyC density (Mg/m ³)	1.9	1.9	1.9
IPyC BAF	1.03	1.03	1.06
OPyC BAF	1.03	1.03	1.06
Irradiation duration (efpd)	1000	1000	1000
End of life burnup (% FIMA)	10	10	10
End of life fluence $(10^{25} \text{ n/m}^2, \text{ E} > 0.18 \text{ MeV})$	3	3	3
Constant irradiation temperature (K)	1273	1273	1273
Ambient pressure (MPa)	0.1	0.1	0.1
Results to be compared	Inr	er surface SiC and IPy	C tangential stress historie

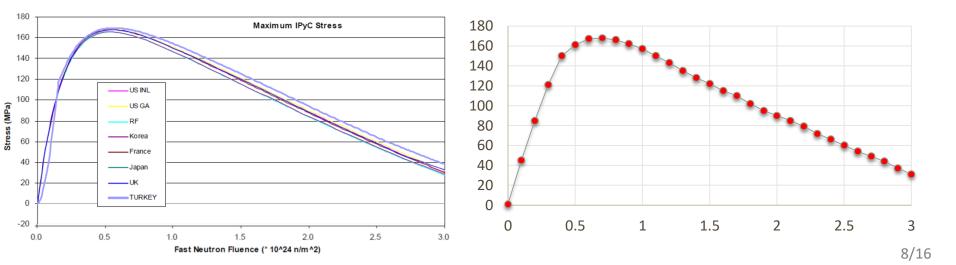
Experiment-Based Problems


Parameter	Case 9: HRB-22	Case 10: HFR-K3/B/2	Case 11: HFR-P4/3
Oxygen to Uranium ratio	2	2	2
Carbon to Uranium ratio	0	0	0
U-235 enrichment (wt%)	4.07	9.82	9.82
Kernel diameter (µm)	544 ± 9	497 ± 14	497 ± 14
Buffer thickness (µm)	97 ± 13	94 ± 10	94 ± 10
IPyC thickness (µm)	33 ± 3	41 ± 4	41 ± 4
SiC thickness (µm)	34 ± 2	36 ± 2	36 ± 2
OPyC thickness (µm)	39 ± 3	40 ± 2	40 ± 2
Kernel density (Mg/m ³)	10.84	10.81	10.81
Buffer density (Mg/m ³)	1.10	1.00	1.00
IPyC density (Mg/m ³)	1.85	1.88	1.88
SiC density (Mg/m ³)	3.20	3.20	3.20
OPyC density (Mg/m ³)	1.85	1.88	1.88
IPyC BAF	1.00	1.053	1.053
OPyC BAF	1.00	1.019	1.019
Irradiation duration (efpd)	89	359	351
End of life burnup (% FIMA)	4.79	10	14
End of life fluence $(10^{25} \text{ n/m}^2, \text{ E} > 0.18 \text{ MeV})$	2.1	5.3	7.2
Time-average, volume-average irradiation Temperature (°C)	1303	1073	1335
Ambient pressure (MPa)	0.1	0.1	0.1
Comparison metric	end of life failure fraction		

Fissions product Release Analysis Tool

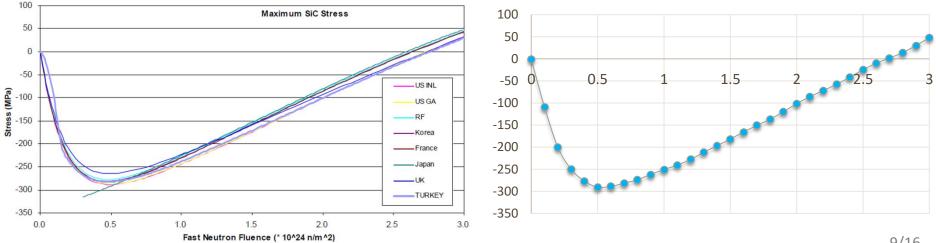
The methods, models, and libraries used by FRAT[4] are outlined below:

- The amounts of fission gases provided by the reactor core inventory code are adopted by FRAT.
- FRAT uses ideal gas law or Redlich-Kwong gas state equation for internal gas pressure calculation.
- FRAT adopts Miller's analytical solution for stress-straindisplacement analysis for TRISO-coated fuel particle.
- Weibull strength theory is adopted by FRAT for particle failure fraction determination.



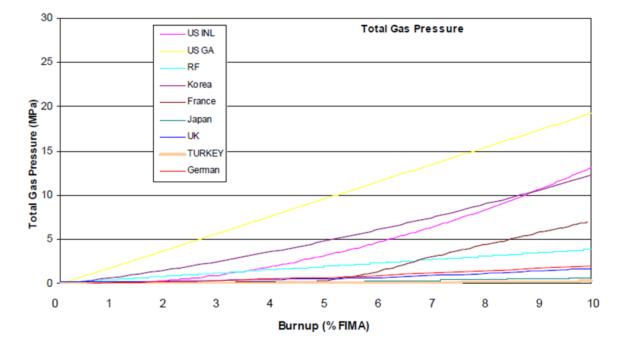
A full three layer (TRISO) coated particle with a 500µm diameter kernel under realistic service conditions:

- IPyC/SiC composite with constant creep and neutron dose dependent swelling
- Linearly raising pressure dependent on burnup (from 0 to 26.20 MPa).



A full three layer (TRISO) coated particle with a 500 μ m diameter kernel under realistic service conditions:

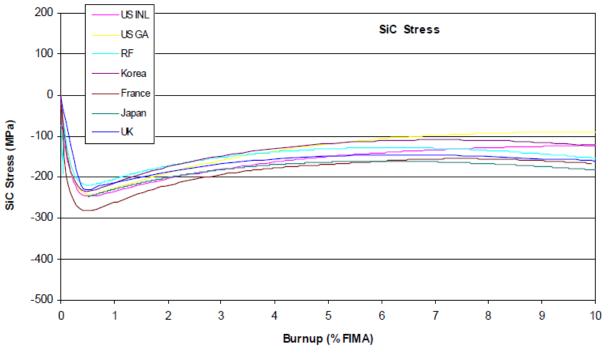
- IPyC/SiC composite with constant creep and neutron dose dependent swelling
- Linearly raising pressure dependent on burnup (from 0 to 26.20 MPa).



HFR-K3/2 experiment [5]

LEU TRISO coated particles with a mean kernel diameter equal to 497 μ m in a pebble irradiated 359 days until 10% FIMA and 5.3 * 10^{25} n/m²

HFR-K3/2 : Total gas pressure as a function of burnup



HFR-K3/2 experiment [5]

LEU TRISO coated particles with a mean kernel diameter equal to 497 μ m in a pebble irradiated 359 days until 10% FIMA and 5.3 * 10^{25} n/m²

HFR-K3/2 : SiC stress as a function of burnup

11/16

To conclude:

- Fuel performance analysis of TRISO fuel are important for safety and licensing perspectives
- Uncertainty quantification in fuel performance analysis is complex but very important
- Preliminary results show that FRAT code is suitable for such analysis, but further verification is needed

- Nairi Baghdasaryan & Tomasz Kozlowski (2020), Review of Progress in Coated Fuel Particle Performance Analysis, Nuclear Science and Engineering, 194:3, 169-180, DOI: 10.1080/00295639.2019.1686882,
- S.A. Ploger, P.A. Demkowicz, J.D. Hunn, J.S. Kehn, Microscopic analysis of irradiated AGR-1 coated particle fuel compacts, Nuclear Engineering and Design, 271, 221-230 (2014)
- 3. Advances in HTGR Reactor Fuel Technology, IAEA-TECDOC-CD-1674
- 4. Dr. Jian Li, FRAT(Fissions product Release Analysis Tool), Users Manual, Institute of Nuclear and New Energy Technology, Tsinghua University
- 5. Nabielek, H., Conrad, R., Röllig, K., Meyers, B.F., Fuel irradiation experiments on HFR-K6 and HFR-B1 with intermittent water vapour injections, (1995) 17–24.

Thank you for attention

Nairi Baghdasaryan

Division of Nuclear Energy and Environmental Studies

nairi.baghdasaryan@ncbj.gov.pl

Rzeczpospolita Polska Unia Europejska Europejski Fundusz Społeczny

New reactor concepts and safety analyses for the Polish Nuclear Energy Program POWR.03.02.00-00.1005/17