Key objectives and results of the Gospostrateg-HTR project

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Seminarium Zakładu Energetyki Jądrowej i Analiz Środowiska (UZ3), 1.03.2022

Agnieszka Boettcher

GOSPOSTRATEG-HTR (GoHTR)

GOSPOSTRATEG - strategic Polish program of scientific research and development (R&D) work "Social and economic development of Poland in the conditions of globalizing markets"

Title: Preparation of legal, organizational and technical instruments for the HTR implementation (Gospostrateg1/385872/22/NCBR/2019)

Consortium:

Ministry of Climate and Environment

implementation(1-18M).

- Phase A: Research work. Preparation of testing procedures and instrumentation necessary for their
- Phase B: Implementation procedures into approvals, especially in terms of Polish Atomic Law(19-36M).

GOSPOSTRATEG-HTR

- Phase A
- (2019.02.01 2020.07.30)
- 1.Development of methods for diagnostics of structural materials in the HTR construction (NCBJ);
 2.Development of methods for testing of structural materials in a nuclear reactor, and equipment for the execution of tests in the core(NCBJ);
 5. Preparation licensing process (certification) of HTGR reactors on the example of a research reactor(ME, NCBJ, ICHTJ);
 6. Preparation draft of legal regulations for the HTR investments implementation: developing a strategy in
- materials in a nuclear reactor, and equipment for the execution of tests in the core(NCBJ);
 3.Research and analysis of selected chemical aspects of the production and use of TRISO fuel in the HTR nuclear reactor(ICHTJ);
 6. Preparation draft of legal regulations for the HTR investments implementation; developing a strategy in the social, economic and industrial aspects of the project(ME, NCBJ, ICHTJ);
 7 Piloting of test procedures for the use of construction
- 7. Piloting of test procedures for the use of construction materials for the legal environment and the potential benefits of social, economic and industrial units for the Polish economy(ME, NCBJ).
 7. Piloting of test procedures for the use of construction materials for the HTR reactor design, including tests in the Maria reactor core (NCBJ);
 8. Preparation of technical and economic assumptions for the use of construction of technical and economic assumptions for the use of construction polish economy(ME, NCBJ).

- Phase B
- (2020.08.01 2022.03.31)

8. Preparation of technical and economic assumptions for the construction of a fuel production unit for hightemperature reactors(ICHTJ).

GOSPOSTRATEG-HTR: Key objectives

Preparation to the licensing process

- TERESA pre-conceptual design
- Facility concept
- Analysis methodology
- Implementation of testing procedures Material tests Identification materials for tests
 - Irradiations in the MARIA reactor

Legal, social, economic and industrial aspects of the project

- Legal regulations for the HTR investments implementation
- Public and industrial communication

GOSPOSTRATEG-HTR: TERESA pre-conceptual design

CONCEPTUAL **PRE-CONCEPTUAL** DESIGN DESIGN

PRELIMINARY DESIGN

BASIC DESIGN

EXECUTIVE TECHNICAL DESIGN

GOSPOSTRATEG-HTR

Pre-conceptual design of research HTR named TERESA

Design based on GEMINI+ Project- down-size of HTR for Industrial application Safety analyses (T-H, neutronics, PSA, et. al.) Secondary circuit design System balance calculations

TERESA functions:

Research (e.g. passive heat removal tests, codes validation);
 Experimental (technological appliances in micro scale - e.g. turbine);
 Applicative (electricity and heat production for own NCBJ needs)

BR

Varodowe Centrum

GOSPOSTRATEG-HTR: TERESA pre-conceptual design, main parameters

	Reactor name		
Parameter	Gemini+	TeResa	
Thermal Power	180 MW	40 MW	
Power density	5.8 MW/m ³	2.36 MW/m ³	
Block type	FSV/SC-HTGR/HTR-Module (pin in block)	FSV/SC-HTGR/HTR-Module (pin in block)	
RPV inlet temperature	~325°C	325°C	
Core inlet temperature	335°C	330°C**	
Core outlet temperature	750-1000°C**	~800°C**	
Reactor outlet tempe-rature (inlet steam generator/IHX)	750°C	750°C*	
Coolant pressure	6 MPa	6 MPa	
Coolant flow	79 kg/s	18,14 kg/s	
Bypass flow	8%	7%	
Number of fuel blocks in a column	11	6	
Number of columns of fuel blocks	31	31	
Core height	11*80 cm = 8,8 m (11 fuel blocks in a column)	6*80 cm = 4,8 m (6 fuel blocks in a column)	
Equivalent core diameter	2,12 m	2,12 m	
Fuel	UO2/12%	UO2/12%	
Burnup	60 MWd/kg	TBD	
Burnup period	550 days	1250days (from MCB)	
Refueling time	every 1.5 years	after assumed burnup	

BR

Narodowe Centrum Badań i Rozwoju

* from system heat balance, D2.10 Assessment of the flexibility of GEMINI+ System_Issue2 ** from MELCOR & SPECTRA calculations

GOSPOSTRATEG-HTR: TERESA codes

CODE	PURPOSE/1
SERPENT2.1.32	neutronic core calculation, Mon
	of continuous energy spectrum
MVP/GMVP	neutronic core calculation, Mon
MCB (AGH team)	neutronic core calculation, Mon
MELCOR	thermal-hydraulic simulation, se
CATHARE	thermal-hydraulic simulation of
SEPHIRE	PSA/PRA- system reliability and
ANSYS Fluent	CFD analyses: ANSYS Design
	and 3D geometry; ANSYS Mes
	Fluent - thermal-hydraulic analy
PC-CREAM	ASSESSOR mode - calculation
	MODELS mode - contains seve
	radionuclides through the envir
	various environmental media as
System Balance	M. Spirzewski (NCBJ) code for
	reactor

BR

TYPE OF ANALYSES, CHARCTERISTIC

te Carlo code particle transport calculations using libraries

- te Carlo code
- te Carlo code
- evere accidents and source term calculations
- multiphase flow dynamics
- alysis, event tree modeling
- Modeller and ANSYS SpaceClaim- tools for creating 2D
- her a tool for creating computational meshes; ANSYS VSIS
- n of effective doses
- eral mathematical models that predict the transfer of
- ronment and allow the estimation of activity concentration in
- s a result of continuous releases
- balancing the thermal system for the TeResa research

GOSPOSTRATEG-HTR: TERESA* pre-conceptual core design

Core control rod channel

*based on the GEMINI+ concept

GOSPOSTRATEG-HTR: pre-conceptual TERESA facility

GOSPOSTRATEG-HTR Material tests

Identification and description of measurement procedures for testing and validation of HTR reactor construction materials

Irradiation System for High TemperAture Reactor (ISHTAR) design

Equipment modernization

Irradiations in the MARIA reactor

Materials: graphite (IG110, NBG-17, NCBJ facility), metal alloys (Hastelloy: X, N, B-3, C-273; Haynes 230)

Implementation of testing procedures

GOSPOSTRATEG-HTR Legal regulations for the HTR investments implementation

Procedure of changes in polish legal acts initiated by Ministry of Climate and Environment, started on 20-07-2021!

Ministry of Climate and Environment

GOSPOSTRATEG-HTR Public and industrial communication

Survey of the Polish industry capabilities

FOAK1: budowy prototypu FOAK (First Of A Kind) reaktora przemysłowego FOAK2-5: budowy następnych 5 reaktorów przemysłowych FOAK W celu odpowiedzi na pytania nr: 3, 5, 6, 16 proszę skorzystać z wykazu K1, załączonego na

- końcu dokumentu. • W celu odpowiedzi na pytania nr: 6 proszę skorzystać z wykazu K2, załączonego na końcu
- dokumentu.

Zadanie realizowane w ramach projektu pt. "Przygotowanie instrumentów prawnych, organizacyjnych i technicznych do wdrażania reaktorów HTR" w ramach Strategicznego Programu Badań Naukowych i Prac Rozwojowych - GOSPOSTRATEG

GOSPOSTRATEG-HTR Public and industrial communication

Seminar for the Industry, 23.11.2021

Time	Description
9.00	Welcome:
	 Representative of the Ministry of Climate and Environment - Andra Director of National Center for Nuclear Research - prof. Krzysztof President of the Polish Space Agency - prof. Grzegorz Wrochna.
9.20	High-temperature reactor - characteristics and applications- prof. Ma
10.00	High-temperature reactor - components and required competence NCBJ
10.40	Introduction to the projects of the European Space Agency- Patrycja
11.20- 11.30	Coffee break
11.30	 Presentation of foreign companies: Toshiba Energy Systems & Solutions Corporation - dr. Akito Naga Mitsubishi Heavy Industries - Kazumasa Suyama USNC - Ziemowit Iwański
12.30	Presentation of the Polish company: • Energoprojekt SA- Olgierd Sikora, Piotr Łatecki
12.50	End of the Meeting

B

- zej Sidło,
- Kurek
- ariusz Dąbrowski, NCBJ
- es-- dr Agnieszka Boettcher,
- a Karwowska, POLSA

ata

- 116 registrated participants!
- most of them from Industry

GOSPOSTRATEG-HTR Public and industrial communication

Series of expert lectures for the public

Reaktory wysokotemperaturowe (HTR) dla Polski Wykłady eksperckie

24.11.2021 (środa), 17:00

Wacław Gudowski Co to jest HTR i dlaczego potrzebujemy go w Polsce? Ekonomia, przemysł, potencjalne zastosowania.

01.12.2021 (środa), 17:00 Piotr Darnowski Zasada działania reaktora HTR. Podstawy fizyki reaktorowej i aspekty bezpieczeństwa HTR.

08.12.2021 (środa), 17:00 Eleonora Skrzypek Jak zbudowany jest reaktor HTR? Podstawy techniczne.

Wykłady zostaną przeprowadzone w formie transmisji online, za pośrednictwem YouTube

Ministerstwo Klimatu i Środowiska

Finansowanie

Narodowe Centrum Badań i Rozwoju

Ministry of Climate and Environment

gohtr.pl

DOWIEDZ SIĘ WIĘCEJ

GOSPOSTRATEG-HTR

Przygotowanie instrumentów prawnych organizacyjnych i technicznych do wdrażania

+folders +short movies on NCBJ YouTube +games +WNE Paris 2021

Reaktor wysokotemperaturow źródło ciepła dla przemysłu

15

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Reactor MARIA 30 MW, high n flux

The second secon

GOSPOSTRATEG-HTR in numbers

Budget	21 370 998.00 PLN
Czas realizacji	36+2 month
End of the project	31.03.2022r.
Number of employees	~110/month
The number of orders completed	~170
WP no. at NCBJ	6

GOSPOSTRATEG-HTR

ACKNOWLEDGEMENT

This work is one portion of the studies in the strategic Polish program of scientific research and development work "Social and economic development of Poland in the conditions of globalizing markets GOSPOSTRATEG" part of "Preparation of legal, organizational and technical instruments for the HTR implementation" financed by the National Centre for Research and Development (NCBiR) in Poland.

Project management at NCBJ:

dr Agnieszka Boettcher - project manager dr inż. Agnieszka Celińska Paweł Sęktas, MA prof. Mariusz Dąbrowski MSc. Małgorzata Frelek-Kozak MSc. Marek Migdal

Thank you!

Contact: Sekretariat.HTR@ncbj.gov.pl agnieszka.boettcher@ncbj.gov.pl

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

www.ncbj.gov.pl

