

RADIOLOGICAL AND STRUCTURAL CHARACTERIZATION OF RBMK-1500 REACTOR GRAPHITE AND APPLICATION OF THE ION IMPLANTATION METHOD TO INVESTIGATE IRRADIATION DAMAGE IN GRAPHITE MATRIX

DR. ELENA LAGZDINA

CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY VILNIUS, LITHUANIA

PRESENTATION CONTENT

- Nuclear graphite: function and statistics
- RBMK-1500 case: radiological and structural characteristics
- Rapid analysis method for the ¹⁴C specific activity determination
- Ion implantation as a tool to study radiation induced structural changes in materials
- Plans and ideas for the future

NUCLEAR GRADE GRAPHITE

- a purity level < 5 ppm (boron equivalent)
- a density greater than 1.50 g/cm³
- produced from selected pitch or petroleum coke
- Reflector and moderator

IGNALINA NUCLEAR POWER PLANT: 2 RBMK-1500 UNITS

2004

2009

INTRODUCTION

World resources of irradiated graphite waste by country (tons) (doi:10.3390/en13184638)

RESEARCH AREAS - QUESTIONS

- Radionuclide distribution
- Structural changes
- Radionuclide stability

RESEARCH AREAS - TOOLS

- Modelling (MCNP, SRIM-2013, GEANT4, SCALE, etc.)
- α -, β -, γ -spectrometry; NAA; ICP-MS
- Ion implantation; Raman spectroscopy; SIMS, SEM

RADIONUCLIDES

- Corrosion and activation products (⁵⁷Co, ⁶⁰Co, ⁵⁴Mn, ⁵⁹Ni, ⁶³Ni, ²²Na),
- fission products (¹³⁴Cs, ¹³⁷Cs, ⁹⁰Sr, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu; ¹⁴⁴Ce)
- And small amounts of uranium and transuranium radionuclides (²⁵⁸Pu, ²⁵⁹Pu; ²⁴¹Am, ²⁴³Am)

Even if present in small amounts (usually less than 0.01%), after 20–30 years of irradiation in the neutron flux these impurities may still pose a radiological risk to the environment.

(doi:10.3390/en13184638)

¹⁴C

Limting radionuclide due to long half-life (~5730 years) and possibility to release into the atmosphere

10-5

Incident Energy (keV)

105

¹⁴C activity in the RBMK-1500 reactor central zone ~10⁵ Bq/g

IMPURITIES

- Glow Discharge Mass Spectrometry (GDMS) in collaboration with CEA (France) (Ancius et.al 2005) (ICP-MS) technique (Puzas et al., 2010)
- Prompt gamma activation analysis (PGAA) Heinz Maier-Leibnitz Zentrum 20 MW water cooled heavy-water moderated thermal neutron flux
- Instrumental neutron activation analysis (INAA) LVR-15 experimental reactor (Research Centre Řež, Ltd.)

https://doi.org/10.1017/RDC.2018.93

EXPERIMENTAL ANALYSIS

The positions of the samples in the RBMK-1500 reactor core.

https://doi.org/10.1016/j.net.2021.07.039

ACTIVITY OF GAMMA-RAY EMITTERS

Sample No.	Sample mass, g	Co-60 A, Bq/g	Ba-133 A, Bq/g	Cs-134 A, Bq/g	Cs-137 A, Bq/g	Eu-152 A, Bq/g	Eu-154 A, Bq/g	Eu-155 A, Bq/g
No.1	0.02245	12970±778	153±14	40±4	321±20	< 7.3	83±8	100±7
No.1b	0.00019	39500±3160	363±44		257±24		-	70±10
No.1a	0.000074	2100±168	165±21		145±18		-	-
No.2	0.02333	10830±650	< 3.0	10±2	96±7	< 6.7	< 2.4	< 4.4
No.2b	0.000422	4900±392	-		66±6		-	-
No.2a	0.0001	4560±365	-		73±10		-	-
No.3	0.0251	12540±752	75±7	35±4	1060±64	< 6.1	167±15	173±11
No.3a	0.000278	21700±1740	112±15		987±60		354±58	111±11
No.3b	0.00038	33500±2680	341±42		1370±83		517±58	393±25
No.4	0.01869	1351±82	< 1.5	< 2.5	66±4	< 3,1	< 1.4	< 2.5
No.4a	0.000152	4310±345	-		139±16		-	-
No.4b	0.000204	2100±168	-		70±7		-	-
No.5	0.02041	4010±241	13±2	17±2	91±6	< 4.5	78±7	80±5
No.5b	0.000414	4240±340	-		61±5		-	-
No.5a	0.000272	331±27	-		102±8		-	-

RAPID ANALYSIS METHOD FOR THE ¹⁴C SPECIFIC ACTIVITY DETERMINATION

The TCD signal indicating intensity of CO_2 flow and β counts registered by semiconductor detector during the combustion of the graphite sample.

¹⁴C ACTIVITY IN IRRADIATED RBMK-1500 GRAPHITE SAMPLES

Sample No.	Sample mass, µg		¹⁴ C activity,	¹⁴ C activity,
	By weighing	By CO ₂ amount	Bq	Bq/g
No.1b	190	186	43.7 ± 2.5	(2.30± 0.13)×10 ⁵
No.2b	422	400	114.5 ± 6.5	(2.71± 0.16)×10 ⁵
No.3b	380	373	94.5 ± 5.5	(2.49± 0.14)×10 ⁵
No.4b	204	210	39.9 ± 2.3	(1.96± 0.11)×10 ⁵
No.5b	414	388	78.9 ± 4.6	(1.91± 0.11)×10 ⁵

THE FULL SCALE MCNP6 3D MODEL OF RBMK-1500 CORE

Graphite construction	Flux, n/cm ² *s	¹⁴ C A, Bq/g
Graphite stack (plateau region)	1.0×10 ¹⁴	1.44×10 ⁵
Graphite stack top⊥	1.4×10 ¹³	3.24×10 ⁴
Graphite sleeve	9.9×10 ¹³	1.16×10 ⁵
Periphery graphite stack	3.0×10 ¹³	4.26×10 ⁴
Periphery graphite stack top⊥	4.1×10 ¹²	9.67×10 ³
Graphite reflector	9.7×10 ¹²	2.38×10 ⁴
Graphite reflector top& bottom	1.4×10 ¹²	3.71×10 ³
Graphite reflector with cooling channel	1.2×10 ¹²	3.26×10 ³
Graphite reflector with cooling top⊥	1.8×10 ¹¹	5.07×10 ²
Graphite CPS channel	9.0×10 ¹³	1.60×10^{5}
Graphite CPS channel top& bottom	1.2×10 ¹³	2.81×10 ⁴

The results of modelling of neutron flux and 14C activity in the RBMK-1500 reactor graphite constructions for average power of 2152MW (for 2018-01-01 date)

SEM IMAGES AND RAMAN SPECTRA

https://doi.org/10.1016/j.net.2021.07.039

ION IMPLANTATION AS A TOOL TO STUDY RADIATION INDUCED STRUCTURAL CHANGES IN MATERIALS

- no sample activation
- time saving
- a variety of choice (ion type, energy, fluence)

Tandetron 4110A

IMPLANTATION PARAMETERS: GEANT4 AND SRIM-2013 MODELLING

700 keV ¹²C⁺ION IMPLANTATION

- G band : C-C bond D band : sp3 hybridization, point defects
- D1 band : amorphous carbon
- D' band: specific/complex defects

https://doi.org/10.1016/j.nimb.2019.01.049

Raman shift, cm⁻¹

1540

1760

1320

1100

¹²C⁺ION IMPLANTATION: ANNEALING

¹²C⁺ION **IMPLANTATION:** ANNEALING

111

1760

https://doi.org/10.1016/j.nimb.2019.01.049

¹⁴N⁺ ION IMPLANTATION

- ¹⁴N⁺ ions at the energy of 180 keV
- fluence of 1.0×10¹⁶ ions/cm² and 2.5×10¹⁶ ions/cm²
- Temperature: RT and 500°C
- Graphite: HOPG and RBMK

¹⁴N⁺ ION IMPLANTATION: SRIM-2013 AND GEANT4 MODELLING

SRIM-2013 AND GEANT4 MODELLING

Graphite type	HOPG	RBMK
Density	2.25 g/cm ³	1.7 g/cm ³
Projected range of ions: SRIM-2013 GEANT4	299 ±45 nm 292 ±58 nm	397 ± 60 nm 368 ± 60 nm
Maximum number of displacements per atom (DPA) SRIM-2013 GEANT4	1.75 (1×10 ¹⁶ ions/cm ²) 4.37 (2.5×10 ¹⁶ ions/cm ²) 1.88 (1×10 ¹⁶ ions/cm ²)	1.61 (1×10^{16} ions/cm ²) 4.04 (2.5×10^{16} ions/cm ²) 1.93 (1×10^{16} ions/cm ²)
	4.70 (2.5×10 ¹⁰ ions/cm ²)	4.82 (2.5×10 ¹⁰ lons/cm ²)
Average number of defects on the surface (~50 nm) (DPA) SRIM-2013	0.46 (1×10 ¹⁶ ions/cm²) 1.13 (2.5×10 ¹⁶ ions/cm²)	0.41 (1×10 ¹⁶ ions/cm²) 1.03 (2.5×10 ¹⁶ ions/cm²)
GEANT4	0.75 (1×10 ¹⁶ ions/cm ²) 1.88 (2.5×10 ¹⁶ ions/cm ²)	0.74 (1×10^{16} ions/cm ²) 1.86 (2.5×10^{16} ions/cm ²)
Average amount of defects in the nuclear reactor due to the neutron damage (DPA/full power year)	-	0.51

¹⁴N⁺ ION IMPLANTATION: MICROSCOPY IMAGES

¹⁴N⁺ ION IMPLANTATION: TEMPERATURE EFFECTS

RBMK

¹⁴N⁺ ION IMPLANTATION: NITROGEN PROFILE (SIMS)

CONCLUSIONS

- Radionuclide production in the reactor core is highly dependent on impurity concentrations. Distribution of γ-ray emitters is non-homogeneous in the irradiated RBMK graphite matrix; the main γ-ray emitters are ⁶⁰Co and ¹³⁷Cs.
- Measured ¹⁴C specific activity values in the irradiated RBMK-1500 graphite samples vary from 190 kBq/g to 270 kBq/g. This corresponds to 25–35 ppm ¹⁴N impurity concentration.
- Operational temperature of nuclear reactor (~350-550 °C) is high enough to ensure that both defect creation and structural reordering process occur at the same time. Due to this, the full amorphization of the crystal matrix is avoided and the functional properties of graphite are not lost, which ensures proper functionality of the material.
- During the dynamical annealing of the graphite structure in the operating RBMK-1500 reactor, most of the ¹⁴N(n,p)¹⁴C reaction dependent ¹⁴C is immobilized in the graphite lattice. This analysis of ¹⁴C behaviour in RBMK graphite suggests that the graphite matrix is a highly effective ¹⁴C dispersion barrier, which is one of the determining factors in the assessment of the surface/geological storage choice strategy.

PLANS AND IDEAS FOR THE FUTURE

- Investigation of the spatial distribution of ¹⁴C activity in the irradiated RBMK-1500 reactor graphite
- Improvemets of the proposed ¹⁴C specific activity determination method
- Characterisation of the metal waste: determination of the surface contamination vs. activation induced activity

THANK YOU FOR YOUR ATTENTION!

Dr. Elena Lagzdina (elena.lagzdina@ftmc.lt)

CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY VILNIUS, LITHUANIA