Non-obvious flow physics in an axi-symmetrical domain

NATIONAL CENTRE **FOR NUCLEAR** RESEARCH ŚWIERK

What do you see here?

• What kind of industrial application it resembles to you?

What was the true origin? (1/2)

In-core irradiation channels types

Courtesy of G. Madejowski (DEJ/NCBJ)

Material sample container types

Generic geometry

What was the true origin? (2/2)

Fig. 1. Schematic cross section of the single-cell calorimeter

"(...) A single-cell calorimeter has been designed for application in the MARIA research reactor in the National Centre for Nuclear Research in Swierk near Warsaw, Poland. Not only the results of this elaboration are to be used in further analysis of the MARIA reactor operation but they are also dedicated for Jules Horowitz Reactor (JHR) analysis by the research centre in Cadarache, France. (...)"

"(…) A two-dimensional model was applied. **The axial symmetry allows to** assume that results from a three-dimensional model should be similar to those from the two-dimensional one. The k-*\varepsilon* realizable model of turbulence was selected. It takes the possibility of flow separation from the wall into account. This phenomenon causes higher flow resistance. In addition, compared to the the k-E standard or *k*-*ω* turbulence models, it gives a velocity profile closer to the correct ones.

Because of the Reynolds number of 5.7 \times 10⁴, the k- ε realizable turbulence model was applied. (...)"

A. Luks et al. (2016) Modelling of thermal hydraulics in a KAROLINA calorimeter for its calibration methodology validation, Nukleonika; 61:4, 453-460, DOI: 10.1515/nuka-2016-0074

 Non-planar vortices in steady-state RANS (converged) results!

Why it made me so confused?

P. Prusiński | 01.12.2020

Did anyone tackle this problem before? (1/2)

• Well, not exactly...

Khalil et al. (2010) Turbulent flow around single concentric long capsule in a pipe, Applied Mathematical Modelling, 34:8, 2000-2017, DOI:10.1016/j.apm.2009.10.014

6/36

Did anyone tackle this problem before? (2/2)

• However, literature well-covers individual effects

Easy geometry – proven results, right?

- Doubts concerning fundumental parameters of developed turbulent flow in annular geometry
 - Brighton & Jones (1964): "Within the accuracy of the experimental results, the zero Reynolds stress and maximum velocity occur at the same point."
 - Rehme (1974) "The non-coincidence between zero shear stress and maximum velocity, which had been assumed and measured in a few experiments, was clearly proved."
 - Chung et al. (2002) "It is interesting to note that the positions of zero total shear stresses are closer to the inner walls than those of the maximum velocities."
 - Boersma & Breugem (2011) ____ "In our direct numerical simulations we observe a coincidence of these points within the numerical accuracy of our model. It is shown that the velocity profile close to the inner annulus is logarithmic."

Nusselt Number in annular ducts

$$Nu = \frac{(f_{ann}/8)RePr}{k_1 + 12.7\sqrt{f_{ann}/8}(Pr^{2/3} - 1)} \left[1 + \left(\frac{d_h}{L}\right)^{2/3}\right] F_{ann}K$$

$$a = \frac{d_i}{d_o}$$
 $d_h = d_o - d_i$ $Re = \frac{Ud_h}{v}$

$$Re^* = Re \frac{(1+a^2)\ln a + (1-a^2)}{(1-a)^2\ln a} \qquad k_1 = 1.07 + \frac{900}{Re} - \frac{0.63}{(1+10Pr)}$$

$$f_{ann} = (1.8 \log_{10} Re^* - 1.5)^{-2} \qquad K = \left(\frac{Pr_b}{Pr_w}\right)^{0.11}$$

V. Gnielinski (2009) Heat Transfer Coefficients for Turbulent Flow in Concentric Annular Ducts, Heat Transfer Engineering, 30:6, 431-436, DOI: 10.1080/01457630802528661

$$Pr = \frac{\nu}{\kappa}$$

- valid for liquids

Figure 1 Boundary conditions for concentric annular duct flow: (a) heat transfer from the inner tube (outer tube insulated), (b) heat transfer from the outer tube (inner tube insulated), and (c) heat transfer from both tubes to the annular flow.

a)
$$F_{ann} = 0.75a^{-0.17}$$

b) $F_{ann} = 0.9 - 0.15a^{0.6}$
c) $F_{ann} - no \ data \ available$

So what is really going on here? (1/6)

• Let's try some RANS modelling first!

Wall temperature

Inich o	ne shou	uld I ch	<u>oose?</u>
			Spalart-Allmaras Realizable K-Epsilon (basic) Realizable K-Epsilon (full) Realizable K-Epsilon (ML) RNG K-Epsilon
			K-Omega SST (basic) K-Omega SST (full) Transitional K-KL-Omega RSM LPS RSM BSL
	6	8	10

L/Dh [-]

So what is really going on here? (2/6)

Let's try some RANS modelling first!

Wall temperature

So what is really going on here? (3/6)

• And the answer is...

Wall temperature

So what is really going on here? (4/6)

• None of them?

Wall temperature

L/Dh [-]

So what is really going on here? (5/6)

Some candidates?

	RANS model	iterations	
	SA VB VH	6322	
	RKE EWT	6976	
	RKE EWT1o23	8541	
	RKE ML	9359	
Wall temperature	KE RNG1 EWT1(2)o(1)	6825	
	KOM SST o2	6726	
	KOM SST o123ito1	6785	
	k-kl-omega	6464	
	RSM LPS	57081	
	RSM BSL	11724	
		Spalart-Allma Realizable K- Realizable K- Realizable K- RNG K-Epsilo K-Omega SST K-Omega SST Transitional H RSM LPS RSM BSL LES time&spa LES time&spa LES time-ave LES time-ave	aras Epsilon (basic) Epsilon (full) Epsilon (ML) n F (basic) F (full) K-KL-Omega ace-averaged [1.076] ace-averaged [1.3543] raged [1.076] raged [1.3543]
6	8		10

L/Dh [-]

So what is really going on here? (6/6)

Of course, but not without the drawbacks!

Wall temperature

Interesting stripes, aren't they?

1# important finding:

Steady-State Realizable k-ε + Menter-Lechner NWT stays in a qualitative and quantitaive agreement with averaged LES!

6

L/Dh [-]

Let's look closer to the vortex structure

 $V_2 = 0 m/s$

Static Pressure

Temperature

2# important finding:

ANSYS R19.0

Academic

There is no just one vortex but a complex of at least two counter-rotating toroidal vortices

Time Signal Analysis - setup

- Samples out of BigData
 (50+ measurement locations)
 - Quadrant analysis
 - FFT analysis (*)

P. Prusiński | 01.12.2020

Fluctuation vs Averaged

 Let's take a look at spatial distribution of averaged and fluctuative part of each velocity component at specified locations (matrix M1)

Approximate line of $u_a = V_z = 0 [m/s]$

boundary layer thickness

> Approximate line of T_{inlet}

 $\overline{u_a}$ U'a AMMANINAMANAMAN

18/36

Tangential velocity

3# important finding:

just after sudden contraction and the average inlet axial componet are of the same value!

P. Prusiński | 01.12.2020

Axial and Radial velocity

P. Prusiński | 01.12.2020

Quadrant Analysis - u'_a u'_r

 What if we look just at correlation between fluctuations of parallel velocity components?

Q2 ejection	Q1 outward		
event	interaction		
Q3 inward interaction	Q4 sweep event	u'r	

Quadrant Analysis

J. M. Wallace (2016) Quadrant Analysis in Turbulence Research: History and Evolution, Annu. Rev. Fluid Mech. 48:1, 131–158, DOI: 10.1146/annurev-fluid-122414-034550

P. Prusiński | 01.12.2020

Quadrant Analysis in practice (1/2)

4# important finding: Surface of zero axial velocity as a surface of maximum strain rate becomes a breader for strong vortical structures

5# important finding: Sweep touching the surface bursts local heat transfer

Quadrant Analysis in practice (2/2)

6# important finding: **Choaking (pressure pulsation)** due to sudden bluff-body-type contraction has no effect on turbulent structures emerging in annular zone

P. Prusiński | 01.12.2020

Flow before the obstacle

The closer to the flat front the stronger strain rate and tangential velocity become!

7# important finding: Annular flow pattern is just a result of upstream flow history, i.e. strain rate distribution that amplifies when approaching flat front!

Possible scenario

Time = 1.344800 [s]

- 1. Developed turbulent flow, passing smooth pipe of inlet section, carries some weak streamwise voritcal structures. Those structures become condensed and hence stronger when approaching flat front of bluff body.
- When passing a leading edge, they shift their shape into rings along the maximum strain rate surface, getting even stronger due to toroidal vortex pair.
- 3. The maximum strain rate surface breads Qevent structures.
- 4. Some fraction of vortical structures detach from the surface close to vena contracta (probably) due to ejection events.
- 5. At the same time, sweep events burst local heat transfer when hitting inner rod surface.
- 6. When detached, strong turbulent vortical structures start to reorient thier axes towards streamwise direction and elongates.
- Elongated structures of alternate (+/-) rotataion pattern imprint either on fluid temperature isosurfaces and on inner rod wall surface.

P. Prusiński | 01.12.2020

But how do we know the LES results are valid?

- - Let's try to: ____

NARODOWE

BADAŃ JADROWYCH

- assure LES approach accuracy
 - Mesh resolution
 - Kolmogorov length scale **>>**
 - How Turbulent Kinetic Energy resolved, how much modelled **>>**
 - Proven boundary condition
 - Do the results depend on the inlet location? **>>**
 - Is the inlet velocity profile trully developed? **>>**
 - Periodical smooth pipe with anisotropic turbulence model
 - Accidential discovery regarding spatial-isotropic nature of RSM BSL
 - Random Flow Generator by Smirnov
 - Why Dynamic Smagorinsky LES?
- be conservative and critical (expecially when pre- and post-processing)
 - Avoid unnecessary calculations
 - Avoid unnecessary interpolations

Exactly! No predecessor in the literature of subject, no experimental database available, so how to prove the numerical results are valid?

Mesh resolution

Do the results depend on the inlet location?

• Acceptably small difference even for the toughest example (and short sampling period ≈ 0.08 s)

• Because of its proven superiority

"...) Slightly better agreement with the PIV measurement can be seen for the DSM SGS model, compared to the WALE SGS model. This is an effect of the dynamic constant of the DSM SGS model, which makes it more suitable for a variety of different flows. (...)"

P. Ekman et al. (2021) Importance of Sub-Grid Scale Modeling for Accurate Aerodynamic Simulations, Journal of Fluids Engineering, 148, TBD, DOI: 10.1115/1.4048351

Why Dynamic Smagorinsky LES?

Why it takes so long?

- Up to now LES went through 135 440 timesteps (2 849 100 it)
- Computational time is tangled with number of software licences available, i.e. 1 licence = 1 CPU core

P. Prusiński | 01.12.2020

Other limitations (1/2)

- Fluent input size (120M hex, LES): 11.4 GB (*.cas) + 93.3 (*.dat)

2020_R1 Fluent (time)				2020_R1 Flue	nt (file size	in GB)			
physical CPU cores	cdat	cgns	plt	Averaged out of X samples		physical CPU cores	cdat	cgns	plt
900	00:25:17	01:32:07	28:18:36	8		900	142.74	79.60	44.45
(pure mesh) 900	-	00:05:51	00:19:38	9		(pure mesh) 900	-	9.57	6.05
(no surfaces) 900	00:27:47	-	01:34:49	12		(no surfaces) 900	142.74	-	39.36
(no interior) 900	00:23:47	-	00:09:02	10		(no interior) 900	56.63	-	0.81
(interior only) 900	00:23:45	-	01:21:42	5		(interior only) 900	141.0	-	43.6
(inplc) 900	00:26:32	-	02:02:47	6		(inplc) 900	141.0	-	43.9
(inplc) 2000	00:18:18	-	03:59:13	5		(inplc) 2000	144.0	-	45.0
460	00:10:59	01:15:20	22:21:09	6		460	141.45	79.60	43.80
220	00:13:44	01:11:32	19:16:59	7		220	140.31	79.60	43.23

• Disk space occupancy: 300 TB+, mainly due to post-processing files

P. Prusiński | 01.12.2020

Other limitations (1/2)

Post-processing machine:

- GPU107 (HPC visualisationworkstation)

Se	erver into:	
•	Model:	ASUS - ESC4000 G3 Series
CF	PU info:	
٠	Model CPU:	Intel(R) Xeon(R) CPU E5-2680 v3
٠	CPU / server:	2
٠	No of cores / CPU:	12
٠	No of threads / CPU core:	2
٠	Total No of cores / server:	24
٠	Total No of threads / server:	48
٠	CPU frequency (nominal/TurboBoost):	2500MHz / 3300MHz
RA	AM info:	
•	Available RAM:	256/512 GB (normal/evaluation period*)
•	Туре:	DDR4
Gł	20 info:	
٠	No of GPU:	2
٠	GPU type:	NVidia Tesla K80 (24GB VRAM)
٠	GPU unit:	GK210GL
•	GPU driver version:	418.39
٠	CUDA driver version:	10.1
•	CUDA compute capability:	3.5

Intel OpenCL:		
 Intel OpenCL library version: 	16.2	
 OpenCL compute capability: 	1.2	
Interconnections:		
Interconnect:	1 x Ethernet (1Gbit/sec per port) 1 x Infiniband FDR (56Gbit/sec per port)	
File systems:		
 /scratch: 	 Local File System (non-shared); Drive space / server: 250 GB; File system: (ext4) over SATA Bandwidth: up to 500MB/sec (read); up to 200MB/sec (write) 	
 /mnt/home: 	 Shared File System; Interconnect: Ethernet 1Gbit/sec; Bandwidth: do 100MB/sec; 	
 /mnt/lustre/home: 	 Shared File System; Interconnect: Infiniband 56Gbit/sec; Bandwidth: up to 2.5GB/sec: 	

Conclusions

- New generic geometrical problem of no predecessor in literature has been presented with a focus on:
 - non-obvious asymmetrical flow phenomena, i.e. a persistent pair of vorticies at leading edge
 - thier impact on heat transfer
- Model validity criteria introduced and confirmed as no reference is known up to this moment.
- Physics of flow and its possible root cause has been explained. Typical technical issues and limitations are also presented.

P. Prusiński | 01.12.2020

Selected literature

- 127, DOI: 10.1007/s10494-010-9295-y
- Fluid Flow, 23:4, 426-440, DOI: 10.1016/S0142-727X(02)00140-6
- DOI: 10.1115/1.4048351
- 10.1080/01457630802528661
- 10.1016/j.apm.2009.10.014
- 453-460, DOI: 10.1515/nuka-2016-0074
- 10.1017/S0022112075003023
- 10.1146/annurev-fluid-122414-034550

B. Boersma & W. Breugem (2011) Numerical Simulation of Turbulent Flow in Concentric Annuli, Flow, Turbulence and Combustion, 86:1, 113-

J. Brighton & J. Jones (1964) Fully Developed Turbulent Flow in Annuli, Journal of Basic Engineering, 86:4, 835-842, DOI: 10.1115/1.3655966 S. Chung et al. (2002) Direct numerical simulation of turbulent concentric annular pipe flow part 1: Flow field, International Journal of Heat and

P. Ekman et al. (2021) Importance of Sub-Grid Scale Modeling for Accurate Aerodynamic Simulations, Journal of Fluids Engineering, 148, TBD,

V. Gnielinski (2009) Heat Transfer Coefficients for Turbulent Flow in Concentric Annular Ducts, Heat Transfer Engineering, 30:6, 431-436, DOI:

M. Khalil et al. (2010) Turbulent flow around single concentric long capsule in a pipe, Applied Mathematical Modelling, 34:8, 2000-2017, DOI:

A. Luks et al. (2016) Modelling of thermal hydraulics in a KAROLINA calorimeter for its calibration methodology validation, Nukleonika; 61:4,

K. Rehme (1974) *Turbulent flow in smooth concentric annuli with small radius ratios*, Journal of Fluid Mechanics, 64:2; 263-287, DOI:

J. M. Wallace (2016) Quadrant Analysis in Turbulence Research: History and Evolution, Annu. Rev. Fluid Mech. 48:1, 131–158, DOI:

Thank you for your attention

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK Piotr Prusiński, MSc. Eng. | CFD Analysis Group
Division of Nuclear Energy and Environmental Studies (UZ3)
Departament of Complex Systems (DUZ)
National Centre for Nuclear Research (NCBJ)
A. Sołtana 7, 05-400 Otwock-Świerk
e-mail: piotr.prusinski@ncbj.gov.pl
tel: +48 22 273 11 26

