ALLEGRO gas cooled fast reactor demonstrator and SafeG H2020/Euratom project UZ3 Seminar, April 13, 2021

NATIONAL CENTRE **FOR NUCLEAR** RESEARCH ŚWIERK

Content

- Introduction
- ALLEGRO concept
- ✤ V4G4 role
- SafeG project
- ✤ NCBJ / UZ3 involvemet
- Summary •

The presentation is based on a papers, presentations and other materials prepared by members of the V4G4 Centre of Excellence and ALLEGRO project.

GFR – Gass-cooled Fast Reactor

- □ GIF selection (1 of 6 technologies)
- □ Fast neutron spectrum
- Inherent coolant
- □ High outlet temperature
- □ High conversion factor (1.4)
- Closed fuel cycle
- Power conversion various possibilities with high efficiency
- □ The quite old concept (80')
- Requires development
 - Material technology
 - Robust cooling systems

REDOWE Urbomachinery LAR DOWE Urbomachinery LADROWYCH SWIERK

nternational Forum ion | Excellence

ALLEGRO – the GFR demonstrator

Low power and limited operational parameters

- \Box P = 50 to 100MW_{th} (curently proposed 75MW_{th})
- **T**coolant = 260 / 516 °C

The goal – demonstration of technology and

- Refractory Fuel development
- Helium technology development
- □ Safety systems and standarts development
- □ Feasibility and viability

General View

- The containment and auxiliary building(s)
- Underground concrete cavity and Steel guard vessel
- □ RPV and primary circuit equipment
 - 2x primary cooling HX integrated with blowers
 - 3x DHR loops

ALLEGRO Cooling Systems Concept

ALLEGRO Cooling Systems Concept of arrangement

ALLEGRO Fuel and Core (MOX, UOX)

- 1: original fuel sub-assemblies
- 5: control sub-assemblies
- 6: diverse shutdowns devices
- 7: steel/dummy sub-assemblies
- 8: radial reflector sub-assemblies
- 9: radial shield sub-assemblies

V4G4

- 2010 Nuclear research institutes of the Visegrad-4 region, in cooperation with CEA started joint preparations aiming at the construction and operation of the GFR demonstrator ALLEGRO
- Creation of the "V4G4 Centre of Excellence" 2013
- ALLEGRO Project Preparatory Phase launched 2015
- CEA joined to the project 2017
- 2019 CVR joined to the project
 - **Given Steering Committee**
 - Project Coordination Team
 - □ Financing: national and European projects
 - Safety and Design Roadmap
 - Databases, Design specifications, Design criteria

Reference Design

- An modern concept elaborated by CEA after 2000
- Experimental Technology Demonstration Reactor (ETDR) CEA presented in 2008; 50MWth; 560°C
- new concept was presented by CEA in 2009 with the name ALLEGRO; 75 MWth; 530°C
- □ ALLEGRO CEA 2009 taken as reference design for V4G4 CoE

European Projects on GFR

- GCFR The Gas Cooled Fast Reactor Project (FP6)
- GoFastR European Gas Cooled Fast Reactor (FP7)
- ALLIANCE ALLegro Implementing Advanced Nuclear Fuel Cycle (FP7)
- □ ESNII + Preparing ESNII for HORIZON 2020 (FP7)
- □ VINCO Visegrad Initiative for Nuclear Cooperation (Horizon 2020)

Safety of GFR through innovative materials, technologies and processes

- 2005 2009-R&D
- -R&D2010 - 2013
- -CSA 2012 -2015
- -CSA 2013 2017
- -CSA 2015 -2018

2020 - 2024-R&D

Project objectives

In general:

- GFR technology demonstrator ALLEGRO
- Update the safety status
- Research for safety improvements

Specifically

- □ Improvement of safety
 - > Through the use of innovative technologies, materials and systems
 - > To solve remaining open questions in residual heat removal in accident conditions
 - > To strengthen the inherent safety of the key reactor components
- Review of the GFR reference options in materials and technologies
- Adaptation of GFR safety to changing needs in electricity production worldwide
- Studies of various fuel cycles and their suitability from the safety and proliferation resistance points of view
 Boosting interest in GFR research by wide involvement of universities and students
- Deep collaboration with international non-EU research teams

	Participant organisation name
1	VUJE, a. s. (Coordinator)
2	ÚJV ŘEŽ, a. s.
3	ENERGIATUDOMANYI KUTATOKOZPONT
4	NARODOWE CENTRUM BADAN JADROWYCH
5	CENTRUM VÝZKUMU ŘEZ S.R.O.
6	THE COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES
7	JACOBS CLEAN ENERGY LIMITED
8	BRINKMANN GERD FRIEDRICH
9	NATIONAL UNIVERSITY CORPORATION, KYOTO UNIVERSITY
10	ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
11	BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
12	SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE
13	THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY
14	THE UNIVERSITY OF SHEFFIELD
15	EVALION s.r.o.

	Short name	Country
	VUJE	Slovakia
	UJV	Czech Republic
	EK	Hungary
	NCBJ	Poland
	CVR	Czech Republic
ALTERNATIVES	CEA	France
	JACOBS	United Kingdom
	BRIVATECH	Germany
	KU	Japan
	CVUT	Czech Republic
	BME	Hungary
	STUBA	Slovakia
OF CAMBRIDGE	UCAM	United Kingdom
	USFD	United Kingdom
	EVALION	Czech Republic

Work Packages

- □ WP1 Core safety EK
- □ WP2 Materials and technologies CVR
- □ WP3 Decay heat removal VUJE
- □ WP4 Integration of results and standardization UJV
- □ WP5 Education and training UCAM
- WP6 Dissemination and outreach Evalion
- □ WP7 Project management VUJE
- □ WP8 Ethics requirements VUJE

WP1 - Core safety, proliferation resistance

WP leader: EK – Gusztav Mayer (initially Andras Kereszturi)

- Proliferation resistance
- \Box Safe core shutdown by design of passive, reliable core control and shutdown system

* Tasks

- □ 1.1 ALLEGRO core designs
- 1.2 Proliferation resistance
- □ 1.3 Diversified shutdown system
- □ 1.4 Core and reflector features, radiation shielding of the reactor vessel and internals

• Core safety, through optimized neutronic, thermal-hydraulic and thermomechanics design of the core

WP2 - Innovative Materials and Technologies for Enhancing Safety of GFRs

WP leader: CVR – Jana Kalivodova

- □ To solve the weak points of selected key components with respect to materials
- □ To test compatibility of selected materials and components with GFR coolant
- To propose and assess adequate innovative materials with better performance as well as the advanced manufacturing processes and technologies

Tasks

- □ 2.1 Innovative solutions for the core and the primary circuit
- 2.2 Compatibility of materials with media in GFR conditions
- 2.3 Advanced manufacturing processes

WP3 - Innovative solutions for decay heat removal

- WP leader: VUJE Boris Kvizda
 - Understanding of complex phenomena related to DHR in GFRs
 - Optimization of reference concepts
 - Design of innovative solutions of key safety systems related to DHR in GFRs

* Tasks

- □ 3.1 Innovative DHR solutions including experimental verification of the DHR system function
- □ 3.2 Instrumentation
- □ 3.3 Isolated DHR loop operation and "conditioning" options
- □ 3.4 Emergency coolant injection system of ALLEGRO
- □ 3.5 Isolation and check valves
- □ 3.6 CFD study of LOFA

WP4 - Integration of the results, standardization, codes

- WP leader: UJV Petr Vacha
 - Integration of results of the project
 - □ Identification of R&D needed in future projects, to build on results of SafeG

* Tasks

- □ 4.1 Results integration
- □ 4.2 Assessment of timescales and R&D needed to implement solutions identified in WP1 and WP2
- □ 4.3 Standardization and codes
- □ 4.4 Fuel qualification options

WP5 - Education and training

WP leader: UCAM – Eugene Shwageraus

□ The goal is to involve new students in solving of actual cutting-edge research problems, by offering interesting Ph. D. and masters theses with a clear connection to application of their results

Organization of several events thermal-hydraulics benchmark workshops

* Tasks

- **5.1** 5.1 Direct involvement of students in the project
- □ 5.2 Benchmarking exercise on gas-cooled reactors
- □ 5.3 GFR summer school and seminars

WP6 - Dissemination and outreach

WP leader: EVALION – Jana Peroutkova

- Dissemination of project results to targeted professional audiences
- Communication with relevant stakeholders and decision makers

WP7 - Project management

WP leader: VUJE – Slavomir Bebjak

- To assure efficient management of SafeG project activities including overall project steering
- □ To ensure cooperative research on technical tasks with quality control;
- To assure internal and external (to the EC) reporting, communication, risk management and knowledge management within the partnership
- To organize project meetings and steering of the project management bodies

essional audiences decision makers

Involvement of NCBJ

- WP1: Core safety... •
 - Task 1.1 ALLEGRO core designs
- WP2: Innovative Materials...
 - Task 2.1 Innovative solutions for the core and the primary circuit
 - Task 2.3 Advanced manufacturing processes

WP3: Innovative solutions for DHR

Task 3.1 Innovative DHR solutions including experimental verification of the DHR system function

- WP4: Integration of the results, standardization, codes
 - Task 4.1 Results integration

WP5: Education and training

- Task 5.1 Direct involvement of students in the project
- Task 5.2 Benchmarking exercise on gas-cooled reactors

WP1 – Core safety

Task 1.1 ALLEGRO core designs (EK, VUJE, CEA, JACOBS, UJV, BME, UCAM, NCBJ)

- Subtask T1.1-a •
- **Expected output from the task**
 - Proposed optimized UOX core configuration(s)
 - Performance characteristics of the UOX core(s)
 - Justification of the safety criteria of the UOX core(s)
 - Proposed MOX core configuration
 - Performance characteristics of the MOX core(s)
 - Justification of the safety criteria of the MOX core(s)

Reference

- ALLEGRO core configuration from the ESNII+ project
- ALLEGRO demonstrator status from EU VINCO project

Codes/models available

- CATHARE2(3), ALLEGRO TH model (VUJE, EK, NCBJ)
- RELAP5-3D, ALLEGRO TH model (VUJE)
- ATHLET3.2 (EK)
- TRACE (NCBJ) ?
- FFTBM (Fast Fourier Transformation Based Method) tool for accuracy evaluation of the TH tools and models
- SERPENT (EK, VUJE, NCBJ, BME)
- KIKO3DMG (EK, BME)
- WIMS (JACOBS, UCAM)
- MONK (JACOBS, UCAM)

WP1 – Core safety

Task 1.1 ALLEGRO core designs (EK, VUJE, CEA, JACOBS, UJV, BME, UCAM, NCBJ)

Subtask T1.1-b •

Expected output from the task

- Thermal hydraulic design of the primary and the secondary loops resulting in high helium temperature at RELAP5-3D, ALLEGRO TH model (VUJE) the core outlet of the refractory core.
- Generation and the parameterization of the group constants of the possible variants of the refractory fuel
- Generation of cross sections of ALLEGRO fuel for the code DYN3D

Reference

- ALLEGRO core configuration from the GOFASTR project
- ALLEGRO demonstrator status from VINCO project

Codes/models available

- CATHARE2(3), ALLEGRO TH model (VUJE, EK, NCBJ)
- ATHLET3.2 (EK)
- TRACE (NCBJ) ?
 - FFTBM (Fast Fourier Transformation Based Method) tool for accuracy evaluation of the TH tools and models
 - SERPENT (EK, VUJE, NCBJ, BME)
 - KIKO3DMG (EK, BME)
 - DYN3D FR data preparation (VUJE)
 - WIMS (JACOBS, UCAM)
 - MONK (JACOBS, UCAM)

WP1 – Core safety

Task 1.1 ALLEGRO core designs (EK, VUJE, CEA, JACOBS, UJV, BME, UCAM, NCBJ)

- Subtask T1.1-c •••
- **Expected output from the task**
 - Proposed optimized refractory core configuration(s)
 - Performance characteristics of the refractory core(s)
 - Justification of the safety criteria of the proposed refractory core(s)

Reference

- ALLEGRO core configuration from the GOFASTR project
- ALLEGRO demonstrator status from VINCO project

Codes/models available

- CATHARE2(3), ALLEGRO TH model (VUJE, EK, NCBJ)
- RELAP5-3D, ALLEGRO TH model (VUJE)
- ATHLET3.2 (EK)
- TRACE (NCBJ) ?
- FFTBM (Fast Fourier Transformation Based Method) tool for accuracy evaluation of the TH tools and models
- SERPENT (EK, VUJE, NCBJ, BME)
- KIKO3DMG (EK, BME)
- DYN3D FR data preparation (VUJE)
- MCNP (BME)

Other planned activities

WP2 - Innovative Materials and Technologies • for Enhancing Safety of GFRs

- NCBJ activities to be done mostly by LBM
 - Advanced manufacturing processes
- □ UZ3 update of TH models according to innovative solutions for core, primary circuit (Main Heat Exchanger and DHR heat exchanger)
- WP3 Task 3.1 Innovative DHR solutions
 - S-ALLEGRO Loop model / codes validation
 - STU Loop model / codes validation
- WP5 Education and Training
 - Involvement of MSc students
 - Benchmarking
 - Summer School

Summary

ALLEGRO is the concept of low power GFR reactor • □ for development and demonstration of the technology

- V4G4 CoE runs the ALLEGRO project since 2015 Design, simulations, benchmarking, experimental facilities
- SafeG project is a great opportunity
 - Collaboration with very involved specialists
 - Getting experience in simulation, optimisation, safety philosophy
 - **Publications and Conferences**
- **Coordination of tasks at UZ3** Soon / some actions started

References

- G. Wrochna; IAEA-CN245-574
- GEN IV ALLEGRO REACTOR Bálint Batki, István Pataki, András Keresztúri, István Panka; 28th Symposium of AER, Olomouc, Czech Republic, 11 October 2018.
- Vasile at the FR17 Conference, Yekaterinburg, June 2017
- Hatala; Nuclear Engineering and Design 345 (2019) 47-61

The ALLEGRO Experimental Gas Cooled Fast Reactor Project; L. Belovsky, J. Gado, B. Hatala, A. Vasile,

GROUP CONSTANT GENERATION AND CORE DESIGN OPTIMIZATION METHODOLOGY FOR THE

The ALLEGRO Experimental Gas Cooled Fast Reactor Project, L. Belovsky, J. Gadó, B. Hatala and A.

□ ALLEGRO Gas-cooled Fast Reactor (GFR) demonstrator thermal hydraulic benchmark; Boris Kvizda a, Gusztáv Mayer, Petr Vácha, Janusz Malesa, Arkadiusz Siwiec, Alfredo Vasile, Slavomír Bebjak, Branislav

Thank you for your attention

www.ncbj.gov.pl

