

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

Badanie dokładności prostokątnego modelu dyfuzyjnego reaktora MARIA

Dominik Muszyński 24.01.2017 r.

DUZ Pracownia Analiz Neutronowych i Nowych Technologii

Plan prezentacji

- 1. Cel i motywacja pracy
- 2. Kody obliczeniowe
- 3. Definicja problemu
- 4. Obliczenia i wyniki
- 5. Wnioski

1. Cel i motywacja pracy

- Zbadanie dokładności obliczeń obecnie stosowanego modelu <u>komórki elementarnej</u> reaktora MARIA opartego na uproszczonej geometrii bloku berylowego.
- Analiza możliwości obliczania efektywnych przekrojów czynnych dla modelu prostopadłościennego z berylem podzielonym na warstwy o zmiennych właściwościach neutronowo- fizycznych, symulującego blok zwężający się

2. Wykorzystane kody obliczeniowe

- MCNP 3D Monte Carlo, referencyjny i najbardziej uniwersalny
- SERPENT 3D Monte Carlo, może obliczać przekroje czynne
- SCALE/NEWT 2D transport, dokładna geometria komórki podstawowej
- CITATION 3D dyfuzyjny, potencjalnie szybki

Blok berylowy

Komórka elementarna

Definicje komórki elementarnej

Najmniejsza, powtarzalna struktura w matrycy rdzenia reaktora

- W obliczeniach wykorzystano komórki 2D i 3D
 - 2D przekrój poprzeczny, obliczenia kodem NEWT
 - **3D** blok berylowy z elementem paliwowym, obliczenia MCNP, SERPENT, CITATION

Komórka elementarna 2D

Komórka elementarna 3D

Model skośny

Model

prosty

Dotychczas stosowane modele 1D

Model geometryczny WIMS

- geometria cylindryczna
- kwadratowa powierzchnia zewnętrzna komórki zastąpiona powierzchnią kołową,
- szczeliny wodne są zhomogenizowane z blokami berylowymi lub reprezentowane za pomocą szczeliny cylindrycznej
- uproszczona geometria CERCA z zachowaniem ilości materiałów

Dotychczas stosowane modele 3D

Model geometryczny REBUS

 bloki berylowe jak i elementy paliwowe modelowane są jako elementy prostopadłościenne

Obliczenia 3D kodem MCNP

NEWT – wstępne założenia do obliczeń stałych materiałowych do CITATION

Podział na strefy do generacji XS

Podział na grupy energetyczne

Energie	Numer grupy	Górna granica grupy energetycznei [eV]
predkie	1	2.00E+7
prędkie	2	8.20E+5
prędkie	3	6.00E+3
prędkie	4	4.00E+0
termiczne	5	6.25E-1
termiczne	6	2.50E-1
termiczne	7	6.00E-2

NEWT - Odwzorowanie geometrii komórki 2D

Ujednorodnienie elementów konstrukcyjnych

Przykładowo: 5. rura paliwowa i jej otoczenie, gęstości jądrowe [at/b-cm]

Model rzeczywisty

Model uproszczony 14

NEWT - Odwzorowanie geometrii komórki 2D

Błędy w przekrojach czynnych dla regionu paliwa dla modelu bez usztywniaczy w porównaniu z modelem z usztywniaczami [%]

Grupa	Przekrój czynny			
energet.	Całkowity	Transport	Absorpcja	Fission
1	-0.09	-0.28	2.73	3.83
2	-0.96	-1.20	-0.02	0.39
3	-0.24	-0.25	-3.19	-1.08
4	-0.11	-0.11	-0.49	-0.59
5	-0.21	-0.20	-0.94	-1.06
6	-0.65	-0.58	-2.25	-2.58
7	-1.36	-1.21	-4.34	-5.03

Różnice w k-inf pomiędzy modelami z i bez usztywniaczy

Region obliczeń k-inf	Model z usztywniaczami	Model bez usztywniaczy	Różnica ∆k _{inf}
Komórka elementarna	1.702633	1.708318	-0.00568
Element paliwowy	1.641556	1.642962	-0.00141

NEWT – Wpływ odwzorowania usztywniaczy

Rozkład strumieni neutronów prędkich

Rozkład strumieni neutronów termicznych 16

NEWT - generacja XS w warstwach niemnożących

NEWT - generacja XS w warstwach niemnożących

Model objętościowy

Model warstwowy

Odniesieniem były wyniki z kodu SERPENT

Porównano przekroje czynne na:

- Absorpcję
- Transport
- Przejścia z grupy do grupy (macierz rozpraszania)

XS Absorpcja		
Objętościowo	Warstwowo	
14.4%	3.0%	
6.6%	0.4%	
12.0%	1.9%	
1.3%	0.1%	
0.6%	0.0%	
5.6%	0.0%	
0.1%	0.6%	

Beryl bez paliwa

XS Absorpcja		
Objętościowo	Warstwowo	
18.0%	5.2%	
11.0%	1.9%	
20.8%	0.2%	
1.4%	0.7%	
1.3%	0.2%	
7.2%	0.0%	
0.9%	0.5%	

Nakładka aluminiowa

Zewnętrzna warstwa wody

XS Absorpcja		
Objętościowo	Warstwowo	
8.6%	6.5%	
12.1%	4.4%	
17.4%	2.2%	
1.5%	0.5%	
0.8%	0.0%	
6.2%	0.1%	
0.0%	0.0%	

Model CITATION

Obliczenia CITATION

Model dotychczasowy – prosty

- CITATION geometria prostopadłościenna
- przekroje czynne z kodu NEWT dla średniej komórki + 6 warstw zewnętrznych
- w każdej z 10 warstw w kodzie CITATION takie same przekroje czynne.
- nie było potrzebne skalowania stałych materiałowych.

Obliczenia CITATION

Model próbny – skośny

- CITATION geometria prostopadłościenna
- przekroje czynnych z kodu NEWT dla 10 warstw z paliwem + 6 zewnętrznych
- przekroje czynne dla berylu nie zostały przeskalowane, wartości takie jak generował NEWT

Model CITATION

Obliczenia CITATION

Model klasyczny – skośny

- CITATION geometria prostokątna
- przekroje czynne z kodu NEWT dla 10 warstw z paliwem + 6 zewnętrznych
- przekroje czynne dla berylu przeskalowane na podstawie wzoru $\Sigma_C = \Sigma_N \frac{V_N}{V_C}$.
- współczynniki dyfuzji obliczono na podstawie przeskalowanych jw. przekrojów czynnych na transport.

$$D_{C} = \frac{1}{3\Sigma_{trC}} \operatorname{gdzie} \Sigma_{trC} = \Sigma_{trN} \frac{V_{N}}{V_{C}}$$

Obliczenia CITATION

Model eksperymentalny - skośny

- CITATION geometria prostokątna,
- przekroje czynnych z kodu NEWT dla 10 warstw z paliwem + 6 zewnętrznych,
- przekroje czynne dla berylu przeskalowane na podstawie wzoru $\Sigma_C = \Sigma_N \frac{V_N}{V_C}$,
- współczynniki dyfuzji obliczono na podstawie nieprzeskalowanych wartości przekrojów czynnych, po czym zostały one przeskalowany jak przekroje czynne, pomnożone przez stosunek objętości

5. Wnioski

- Przedstawiono metodę generacji i transformacji efektywnych przekrojów czynnych dla modelu prostopadłościennego, o zmiennych parametrach neutronowo-fizycznych symulujących zwężający się blok berylowy.
- Skośna geometria komórki elementarnej 3D wpływa na kształt rozkładu strumienia neutronów w funkcji wysokości.
- Sposób uwzględnienia usztywniaczy w elemencie paliwowym wpływa na XS, k-ef i azymutalny rozkład strumienia.
- Opracowano metodę generacji XS dla warstw niemnożących.
- Problemy: wpływ kształtu bloku na wypalanie, rozkłady zatruć, 3D rozkłady strumieni w rdzeniu.

DZIĘKUJĘ ZA UWAGĘ