Master's thesis: Establishment of reasonable model to simulate emergency passive coolant system in HTTR reactor

Supervisor: dr. hab. Mirosław Seredyński

NARODOWE CENTRUM JĄDROWYCH ŚWIERK

Most important element of thesis: developing

Michał Jędrzejczyk

Reactor type comparison

Comparison of available nuclear energy systems, Gregg Butler, Manchester University

Michał Jędrzejczyk

High Temperature Test Reactor in Japan cross section

Lower cooling panel

Upper cooling panel

Side cooling panel

Side cooling panel

Michał Jędrzejczyk

Benchmark experiment setup

Configuration number						
nosphere inside the pressure vessel		Vacuum	He	N ₂		
ressure [MPa]		1,3* 10 ⁻⁶	0,73	1,1		
tal heat power [kW]		13,14	28,79	93,93		
	No. 1	1,01	1,16	5,90		
over	No. 2	2,31	3,11	16,05		
in	No. 3	2,64	3,52	19,88		
- III nmente -	No. 4	2,46	5,10	22,24		
[kW]	No. 5	3,76	10,42	22,13		
	No. 6	0,96	5,49	7,72		
ooling medium		Water	Water	Water		

Conditions, under which the experiment was conducted

Source: Nuclear Power Technology Development Section, IAEA, Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions, Vienna, 2000.

General assumptions for model

- Gas density as a function of temperature
- 2D axisymmetric geometry
- Volumetric heat generation on heaters
- Constant temperature boundary condition in place of cooling panels
- Turbulent flow between the vessel and cooling panels (Ra~10^9), RNG k-epsilon model with

enhanced wall treatment

Michał Jędrzejczyk

Geometry of model for configuration No. 1

- Vessel interior pressure = 1 Pa
- Ra ~ 0 -> natural convection processes can be
 - omitted in vessel interior
- Natural convection processes cannot be omitted in
 - vessel surroundings
- Material properties taken from the experiment
 - description published by IAEA

Mesh of model for configuration No. 1

Michał Jędrzejczyk

Results for configuration No. 1

Results are in good agreement with the experiment (0-5% relative difference) except for the area close to flange up to 15% relative difference.

Temperature spikes in the flange area are probably a result of simplifying local geometry

Michał Jędrzejczyk

Comparison of results with results from another researchers

160 150 140 130 120 110100 90 80 0,00 0,50 1,00 1,50

Source: Nuclear Power Technology Development Section, IAEA, Heat Transport and Afterheat Removal for Gas **Cooled Reactors Under Accident** Conditions, Vienna, 2000.

Temperature [C]

Distance from the floor [m]

The temperature profile is comparable to profiles obtained by another researchers, published in the IAEA report

Temperature profile along vessel outer wall

Michał Jędrzejczyk

Pathlines Colored by Velocity Magnitude (m/s)

Contour plot of velocity in the vessel surroundings

Y+ value is close to 1 as required when using enhanced wall treatment

Michał Jędrzejczyk

Experiment configuration No. 2

Heater Support

Ra ~ $3*10^7 =$ fluid flow inside the pressure vessel cannot be omitted; transitional flow

Method of "blackboxing" (simplifying) vessel surroundings

Problem – ANSYS educational license doesn't allow for simulation of two fluids segregated by a barrier

Solution – replacing vessel surroundings with a convection-radiation boundary condition. The heat transfer coefficient and effective temperature of surroundings are updated after every iteration

Procedure:

- Conducting simulations for immobile gas in the vessel interior (ANSYS educational allows for that) and mobile gas in vessel exterior with different heater powers
- Saving the radiation and total heat flows and temperature profile along outer edge of the pressure vessel
- Calculating heat transfer coefficient and effective temperature for radiation along the 3. outer edge of the vessel

Coincidentally, the method decreases computational costs of simulation.

4/29

Michał Jędrzejczyk

Heat transfer coefficient along the edge of pressure vessel

Michał Jędrzejczyk

Distance from the floor [m]

Michał Jędrzejczyk

16/29

500,00

Correlations for heat transfer coefficients

 ΔT = Average temperature of vessel walls – average temperature of cooling panels

x = vertical coordinate of a particular finite volume edge

Geometry element	Correlations for heat transfer coeff new calculational domain
Skirt type vessel support	17.0324996*x*x-6.5112997*x+0.0065
Vessel side wall	(-0.002188∆ <i>T</i> -1.51461)*x+0.007336*∆
Flange	2.1
Upper vessel dome	(-0.003219*∆ <i>T</i> -4.79179)*x+0.010041*.

Correlations for effective surrounding temperature for radiation look similar to the correlations above

Michał Jędrzejczyk

Implementation of heat transfer coefficients

Expression		\times								
Name			💽 Wall							
h_sciana_boczna			Zone Name							
Definition			zbiornik_sciana	_boczna						
(-0.002188[K^-1*m^-1W/(m^2*K)]*(Average(WallTemperature,	Functions 👻		Adjacent Cell Z	one						
['zbiornik_sciana_boczna', 'kolnierz', 'zbiornik_gora'],Weight = 'Area')-296[K])-1 51461[m^-1W/(m^2*K)])*x+0 007336[K^-1*W/	Variables 👻		atmosfera_zbiornik							·
(m^2*K)]*(Average(WallTemperature,['zbiornik_sciana_boczna', 'kolnierz',	Constants 👻		Momentum	Thermal	Radiation	Species	DPM	Multiphase	UDS	Potential
'zbiornik_gora'],Weight = 'Area')-296[K])+5.331032[W/(m^2*K)]	Expressions 💌		Thermal Cond	litions						
	Report Definitions -		🔘 Heat Flux	(Heat Transf	er Coefficier	nt h_sciana_boczn	a	
	Locations 💌		🔘 Tempera	ture		Free Stream	Temperatur	e (k) 296		
			Convection	on		E.t.				
			Radiation	l		Exter	ndi Emissivii	y 0.95		
			Mixed		Exte	ernal Radiation	Temperatur	e T_eff_sciana_bo	oczna	
Current Value Refresh value			💛 via Syste	m Coupling		W	/all Thicknes	s (m) 0.012		
Details Plot			🔘 via Mapp	ed Interface		Host Co	noration Rat	e (w/m3)		
Description			Material Name	9		field Ge		e (w/m5)[0		
			stal_nierdzev	vna 🔻	Edit					
Used In										
zbiornik_sciana_boczna (Convective Heat Transfer Coefficient)		-								
OK Cancel Help						Ар	Close	Help		

Simulation results for configuration No. 2

Configuration number	II		
Gas inside t pressure ves	He		
Pressure [M	Pa]	0,73	
Total heating power [kW]		28,79	
	No. 1	1,16	
Heating power	No. 2	3,11	
of segments	No. 3	3,52	
[kW]	No. 4	5,10	
	No. 5	10,42	
	5,49		
Cooling med	Water		

The agreement between simulation results and experiment is acceptable below the flange (up to 15 % difference) and good above the flange

1500,00

500,00

19/29

Michał Jędrzejczyk

Model geometry for configuration No. 2

Source: Nuclear Power Technology Development Section, IAEA, Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions, Vienna, 2000.

The temperature profiles obtained by other researchers look similar. The best fit was achieved by using researchers using commercial ANSYS

Temperature profile along vessel outer wall

Michał Jędrzejczyk

Model geometry for configuration No. 3

Upper vessel dome

Flange

Side wall of pressure vessel

Skirt type vessel support

	Lo
0.00	pa
0,00	
	500,00

Configuration nu			
Gas inside the pressure vessel		N ₂	
Pressure [MPa]		1,1	
Total heating power [kW]		93,93	
	No. 1	5,90	
	No. 2	16,05	
Heating power of	No. 3	19,88	
segments [kW]	No. 4	22,24	
	No. 5	22,13	
	No. 6	7,72	
Cooling medium		Water	

Ra ~ 4*10^8 => turbulent flow inside the vessel

21/29

Michał Jędrzejczyk

Heat transfer coefficient along the edge of pressure vessel

Distance from the floor [m]

Michał Jędrzejczyk

22/29

1500,00

500,00

Michał Jędrzejczyk

Results for configuration No. 3

Temperature profile along vessel outer wall

A nearly perfect agreement between simulation and experimental results was achieved

Michał Jędrzejczyk

Comparison with results obtained by other researchers

Temperature profile along vessel outer wall

Source: Nuclear Power Technology Development Section, IAEA, Heat Transport and Afterheat Removal for Gas **Cooled Reactors Under Accident** Conditions, Vienna, 2000.

Distance from the floor [m]

Michał Jędrzejczyk

Comparison of heat transfer coefficient profiles obtained when preparing correlations

Distance from the floor [m]

Heat transfer coefficient profiles slightly differ when heating power distributions are different

Michał Jędrzejczyk

Strengths and weaknesses of the model

- Insufficiently good correlation describing boundary conditions. A more complex correlation is required, based on more or other inputs than average vessel temperature, surroundings temperature and finite volume coordinate
- + It is probably possible that the model could be used to simulate natural convection in other cases than enclosed systems
- + Using "blackboxing" method leads to a decrease in required calculational power
- + Eliminates the need to use literature-based heat transfer coefficients or allows to verify them

Michał Jędrzejczyk

Possibilities of application of the developed calculational method

An example of an attempt to apply CFD to calculation of HTTR reactor is visible on the left. Reduced number of simulated channels to cut calculational costs led to overestimation of

fuel temperature.

Study of the applicability of CFD calculation for HTTR reactor

Nobumasa Tsuji^{a,*}, Masaaki Nakano^a, Eiji Takada^a, Kazumi Tokuhara^a, Kazutaka Ohashi^a, Futoshi Okamoto^a, Yujiro Tazawa^b, Yoshitomo Inaba^b, Yukio Tachibana^b

.589e+000

^a Fuji Electric Co. Ltd., 1-1 Tanabeshinden, Kawasaki-ku, Kawasaki city 210-9530, Japan ^b Japan Atomic Energy Agency, Oarai-machi, Higashiibaraki-gun, Ibaraki-ken 311-1393, Japan

According to literature simulating fluid flow inside cooling channels leads to too large

computational costs. Could blackboxing them lead to credible results?

Michał Jędrzejczyk

Thank you for your attention

www.ncbj.gov.pl

