

RECENT ADVANCES IN HEAT TRANSFER RESEARCH AND MODELLING

Henryk Anglart, Professor Director of the Center for Nuclear Technology AlbaNova University Center KTH Royal Institute of Technology

www.reactor.sci.kth.se

Outline

- Introduction
- Thermal mixing leading to thermal fatigue
- Towards DNB
- Annular two-phase flow modeling
- Towards dryout
- Post-dryout heat transfer
- Conclusions

Introduction – Thermal Mixing and Fatigue

- Thermal fatigue is one of the main ageing mechanisms considered in evaluation of the reduction of the lifetime of plant components
- It is highly relevant to components where mixing of two non-isothermal streams occurs
- A thermal fatigue related event occurred in Forsmark and Oskarshamn NPPs in 2008.
- In both cases several control rod extenders were completely broken and some had incipient cracks

Tinoco et al. ICONE18, 2010

Outer Tube of Test Section

ROYAL INSTITUTE

KTH Royal Institute of Technology • www.kth.se NRT • www.reactor.sci.kth.se

KTH Royal Institute of Technology • www.kth.se NRT • www.reactor.sci.kth.se

echnology

KTH

ROYAL INSTITUTE OF TECHNOLOGY

Thermocouple Discs

Left and right TC discs

Central TC disc

Thermocouple Mounting in Disc

Direct water temperature measuring thermocouple used in left and right discs (Bergagio et al., NURETH-16, 2015)

Measured Wall Temperature

ROYAL INSTITUTE OF TECHNOLOGY

Case 1, axial location 0.7 m, angle 0.55° (T_{cold} = 60 °C, W_{hot} = 0.8 kg/s)

Case 1, axial location 0.7 m, angle 0.55° ($T_{cold} = 60$ °C, $W_{hot} = 0.8$ kg/s)

KTH Royal Institute of Technology • www.kth.se NRT • www.reactor.sci.kth.se

Measured Wall Temperature

ROYAL INSTITUTE OF TECHNOLOGY

Case 6, axial location 0.7 m, angle 0.56° ($T_{cold} = 150$ °C, $W_{hot} = 0.6$ kg/s)

Measured Wall Temperature

ROYAL INSTITUTE OF TECHNOLOGY

Case 9, axial location 0.7 m, angle 0.15° ($T_{cold} = 60$ °C, $W_{hot} = 0.4$ kg/s)

LES prediction of thermal mixing

ROYAL INSTITUTE OF TECHNOLOGY

Reijo Pegonen

chnology

KTH

ROYAL INSTITUTI

Boiling Heat Transfer

- Prediction of CHF in LWR fuel assemblies still remains in the focus of TH research
- The main difficulties in prediction of DNB stem from
 - Multiphysics problem with a large span of length scales
 - surface features [nm]
 - liquid microlayers beneath bubbles [µm]
 - bubbles [mm]
 - bulk flow features [cm]
- The main difficulties in prediction of dryout stem from
 - high voids requiring modelling of flow pattern transition
 - resolving thin liquid film [µm]
 - prediction/modelling of the drop size distribution
 - modelling of the entrainment rates
 - liquid film stability and breakup

Boiling regimes with constant wall heat flux

 H_{f}

x=0

┢┥

Χ

 H_{v}

x=1

Typical q-x path

in BWRs

 \mathbf{q}_3 \mathbf{q}_{w} Mist Subcooled film evaporation Sat. film boiling boiling $x(z) = \frac{H(z) - H_f}{H_{fg}}$ q_2 $\frac{H(z) = H_{in} + \frac{q_w P_h z}{GA}}{GA}$ \mathbf{q}_{w} [W/m²] OLD OLT Subcooled z [m] nucleate boiling Sat. nucl. \mathbf{q}_1 A [m²] boiling <u>x, H</u> Forced Single phase 0, in G_{in} [kg/m²s] convection convective boiling H_{in} [J/kg]

Typical q-x path

in PWRs

Experimentally observed DNB mechanisms

- Three major DNB mechanisms have been observed in experiments
 - Type 1: bubbly flow, where dry patches are created below single large bubbles
 - Type 2: DNB in bubbly microlayer under vapor clots
 - Type 3: DNB in liquid film under vapor slugs

Type 1 DNB – bubble grow

ROYAL INSTITUTE OF TECHNOLOGY

Type 1 DNB – towards crisis

ROYAL INSTITUTE OF TECHNOLOGY

ROYAL INSTITUTE

Type 1 DNB – visualization

CHF location

Melting-through heater

Red and white metal

From Celata et al., Rev. Gén. Therm. (1998)

Type 2 DNB – bubble grow

ROYAL INSTITUTE OF TECHNOLOGY

Type 2 DNB – visualization

ROYAL INSTITUTE OF TECHNOLOGY

chnology

KTH

From Fiori and Bergles, 4th Int. Heat Transfer Conf. (1970)

DNB We-x flow regime map

ROYAL INSTITUTE OF TECHNOLOGY

All three types of DNB can be represented on a Weber number - quality plane

Modelling DNB

- Major categories of DNB models
 - Bubbly layer models (e.g. "bubble crowding" model" by e.g. Weisman and Pei)
 - Liquid sublayer models (e.g. model by Lee and Mudawar)
 - Bubble-nucleation models (e.g. "dry spots formation model" by Ha and No, 2000, Bricard et al. and J-M Le Corre, 2007)

Bubble crowding model

ROYAL INSTITUTE OF TECHNOLOGY

- Bubbles are collecting close to the heated wall in a bubbly layer
- There is an interchange of mass end enthalpy between the bubble layer and the bulk flow
- DNB occurs when void fraction in the bubbly layer exceeds a critical value of 0.82
- At that point liquid is blocked and can not reach the wall

Liquid sublayer model

- Bubbles are collecting close to the heated wall
 - Liquid film is created between the heated wall and the vapor blanket
- Vapor blanket becomes unstable due to Kelvin-Helmholtz instability
- Liquid film dries out and dry spots appear, leading to DNB

Bubble nucleation limit

е

J-M Le Corre, 2007

ROYAL INSTITUTE OF TECHNOLOGY

Examples of CFD Models of DNB

• NEPTUNE_CFD approach (EDF, France)

- two-fluid framework with drag, added mass, lift and turbulent dispersion forces
- turbulent modelled with k-e and RSTM
- bubble size distribution
- wall function for boiling flow (Mamouni et al. 2009)
- DNB criterion based on void fraction at the wall and the wall temperature

• PSI_BOIL approach (PSI, Switzerland)

Experimental Investigation of Bubble Ebullition (Kromer, Anglart et al.,2016)

Main Open Questions in Modelling of Dryout

- Some of the closure laws are quite well developed and prove to give results that are in agreement with experiments; e.g. deposition rates and entrainment rates
- Other still require some fundamental development:
 - drop size in annular flow
 - the liquid film fraction at the onset of annular flow
 - the liquid film thickness at dryout

Recent Measurement of Droplet Size in Bundles

- New experimental data have been obtained recently
 - 3x3 BWR bundle
 - high speed camera recording
 - each pixel on image correspond to ~7µm
 - air water
 - pressure: 117.1 146.5 kPa
 - temperature : 15 16 °C

Recent Measurement of Droplet Size in Bundles

- Figures show droplet size distributions 6 cm upstream of the spacer (lower figure) and 10 cm downstream of the spacer (upper figure)
- Note:
 - spacer introduces a huge number of small droplets
 - the peak size is at ${\sim}50~\mu\text{m}$
 - a few large droplets (above 400 µm) appears downstream of the spacer (due to formation of thick ligaments on the top of the spacer)

Measured Droplet Size Distributions at BWR Conditions

- Saphirre optical probe used in FRIGG for local void measurements
- Operation conditions: p = 7 MPa, T = 285 °C

ROYAL INSTITUTE

Measured Droplet Size Distributions at BWR Conditions

- Measured drop size characteristics [mm]:
 - minimum 0.2
 - arithm. mean: 0.3
 - Sauter mean: 0.7
 - de Brouckere mean 1.2
 - maximum: 5.3
- Void fraction in the core:
 0.9 0.99
- Flow velocity up to 35 m/s

Turbulent Flow in Nuclear Fuel Assemblies with Spacer Grids

Water-air loop for thermal-hydraulic investigations in fuel assemblies

Lateral Distribution of Spacer Effect on Turbulence in a Rod Bundle

ROYAL INSTITUTE OF TECHNOLOGY

Nuclear Reactor Technology

- Mechanistic approach to model dryout should relay on the basic conservation laws for mass, momentum and energy
- This approach has an advantage of most general applicability and high accuracy
- Deposition rates are obtained from detailed particle-tracking analyses using CFD
- Entrainment rates are obtained from models based on liquid film instability
- This approach requires adequate closure laws and sub-grid models which are not available yet

Early CFD Models

- The basic idea in this model was to predict the liquid film thickness on heated rods
- Eulerian-Eulerian approach to gas core + 1D liquid film model

thinnest film

measured dryout

Current CFD Modelling of Annular Mist Flow - Liquid Film Model

- Eulerian-Lagrangian approach with liquid film capability (Li and Anglart, ANE, 2015)
- Basic assumptions for thin liquid film model:
 - flow in normal direction to wall is neglected
 - advection is treated in wall tangential direction only
 - difussion is treated in wall normal direction

CFD Modelling of Annular Mist Flow Liquid Film Model

- The transport equation for the liquid fil can be integrated in the wall normal direction to give 2D equations
- All film properties are depth-averaged as follows

• The film conservation equations become

$$\frac{\partial(\rho\delta)}{\partial t} + \nabla_s \cdot (\rho\delta \mathbf{U}) = S_{\delta}$$

$$\frac{\partial(\rho \partial \mathbf{U})}{\partial t} + \nabla_{s} \cdot (\rho \partial \mathbf{U} \mathbf{U}) = -\partial \nabla_{s} p + S_{\mathbf{U}}$$

$$\frac{\partial(\rho \delta h)}{\partial t} + \nabla_s \cdot (\rho \delta h \mathbf{U}) = S_h$$

- U mean film vel. vect.,
- h mean film enthalpy,
- δ mean film thickness

Liquid Film Model Mass Conservation

ROYAL INSTITUTE OF TECHNOLOGY

 Mass exchage between liquid film and gas core The evaporation rate is calculated from the mass/energy conservation at the interface

 $S_{\delta,evap} = -\frac{q''_w}{h_{fg}}$

- The deposition rate is found from particle tracking (Euleriand-Lagrangian approach) or from correlations (Eulerian-Eulerian approach)
- The entrainment rate is found from correlations

Liquid Film Model Momentum Conservation

- Hydrostatic $p_{\delta} = -\rho \delta \mathbf{n} \cdot \mathbf{g}$
- Deposition $p_{dep} = \dot{m}_{dep} \left(\mathbf{v}_{d} \cdot \mathbf{n} \right)$

• capilary
$$p_{\sigma} = -\sigma \nabla_s^2 \delta$$

• vapor recoil $p_{vap} = \frac{\rho_v |\mathbf{v}_v \cdot \mathbf{n}|^2}{2}$

 Momentum source terms for the liquid film in the film normal direction

Liquid Film Model Momentum Conservation

- Momentum source terms for the liquid film in the film tangential direction
- Thermocapillary $S_{U,mag} = -\nabla_s \sigma$
- Contact angle

 $F_c = \sigma (1 - \cos \theta)$

Deposition

$$F_{\mathbf{U},dep} = \dot{m}_{dep} v_{dt}$$

KTH Royal Institute of Technology • www.kth.se NRT • www.reactor.sci.kth.se

Hydrostatic

$$S_{\mathbf{U},\delta} = \rho \delta g_t$$

Wall shear

$$S_{\mathbf{U},\tau_w} = -\mu_l \left(\frac{\partial \mathbf{u}}{\partial z}\right)_{z=0}$$

Interface shear

$$S_{\mathbf{U},\tau_g} = \frac{1}{2} C_{f,i} \rho_g |\mathbf{u}_g - \mathbf{u}_f| (\mathbf{u}_g - \mathbf{u}_f)$$

• where (Wallis, 1969)

$$C_{f,i} = 0.005 \left(1 + 300 \frac{\delta}{D_h} \right)$$

Liquid Film Model Energy Conservation

• Wall heat $S_{h,q_w} = -k_l \left(\frac{\partial T}{\partial z}\right)_{z=0}$

 Energy source terms for the liquid film • Interfacial heat flux

$$S_{h,q_g} = -k_{geff} \left(\frac{\partial T}{\partial z}\right)_{z=\delta}$$

Film evaporation

$$S_{h,vap} = S_{\delta,vap} h_{fg}$$

drop deposition

$$S_{h,dep} = \dot{m}_{dep} h_d$$

Gas Core Modelling

- Two approaches are used:
 - Eulerian-Eulerian
 - Eulerian-Lagrangian
- In Eulerian-Lagrangian framework
 - the gas phase is treated as a continuum, described with the RANS equations
 - droplets are solved by Lagrangian Particle Tracking (LPT) approach, accounting for the mass, momentum and energy exchange with the gas field
- In Eulerian-Eulerian framework
 - both phases are treated as a continuum, described with the RANS equations

Turbulence Modelling in the Gas Core

- In Eulerian-Lagrangian framework
 - the turbulence of the continuous phase is modelled with the k-omega-SST approach
 - the effect of droplets on turbulence is included
- In Eulerian-Eulerian framework
 - each phase is treated as a continuum, described with the RANS equations

Eulerian-Lagrangian Approach

• The droplet motion equations are as follows:

$$\frac{d\mathbf{x}_d}{dt} = \mathbf{v}_d$$
$$m_d \frac{d\mathbf{v}_d}{dt} = F = \mathbf{F}_D + \mathbf{F}_L + m_d \mathbf{g}$$

 m_d mass of a droplet

F total force

\mathbf{F}_{L} lift force

Lagrangian Particle Tracking

GOAL: To model drop deposition in complex geometries and to take into account spacer effects

Inserting drops at inlet and at film surface (entrainment)

Eulerian-Eulerian Approach

• The droplet motion equations are as follows:

$$\frac{\partial \alpha_{k} \rho_{k}}{\partial t} + \nabla \cdot (\alpha_{k} \rho_{k} \mathbf{U}_{k}) = \Gamma_{k}$$

$$\frac{\partial (\alpha_{k} \rho_{k} \mathbf{U}_{k})}{\partial t} + \nabla \cdot (\alpha_{k} \rho_{k} \mathbf{U}_{k} \mathbf{U}_{k}) = -\alpha_{k} \nabla p + \nabla (\alpha_{k} \frac{a}{\tau}) + \alpha_{k} \rho_{k} \mathbf{g} + \Gamma_{k} \mathbf{U}_{ki} + \mathbf{M}_{ki}$$

$$\frac{\partial (\alpha_{k} \rho_{k} h_{k})}{\partial t} + \nabla \cdot (\alpha_{k} \rho_{k} h_{k} \mathbf{U}_{k}) = -\nabla (\alpha_{k} \mathbf{q}'') + \Gamma_{k} h_{ki} + q_{ki}'''$$

$$\Gamma_{k} \text{ mass source for phase k}$$

$\mathbf{M}_{\textit{ki}}$ interfacial momentum transfer

\mathbf{U}_{ki} phase-k velocity at the interface

Coupling of the Gas Core with the Liquid Film (for Mass Transfer)

- The liquid film calculations give source terms for the gas flow calculations
- Gas core calculations prepare sources for liquid film calculations in the next time step
- Transient solution scheme is adopted

Onset-of-Dryout Criterion

- Liquid film is assumed to breakup when the film thickness is less than the critical heat thickness
- Two models for the critical film thickness are considered:
 - Chun et al. (2003):

- Anglart (2011, 2013, 2015) – mechanistic model of the minimum wetting rate in a closed channel

Modelling of Post-Dryout Heat Transfer

- The following transfer mechanisms are included
 - wall-gas heat transfer, qc(w-g)
 - gas-droplets interfacial heat transfer qc(g-d)
 - wall-droplet direct contact heat transfer qd(w-d)
 - thermal radiation between the wall, the gas and the droplets, qr(w-g), qr(w-d), qr(g-d)

Experimental Data used in Validation of the Model

ROYAL INSTITUTE OF TECHNOLOGY

Computational Geometry and Grid

- 270 K mesh selected after mesh sensitivity study
- 54.4 K mesh used for Eulerian-Lagrangian calculations

Liquid Film Flow Rate for Case 1 (750 kg/m²s)

ROYAL INSTITUTE OF TECHNOLOGY

- Eulerian-Lagrangian approach is used
- Only annular flow region of the pipe is modelled
- Liquid film flow rate is underpredicted due to entrance effect, where entrainment rate is too high

Improved accuracy close to the outlet

Liquid Film Flow Rate for Case 2 (1250 kg/m²s)

ROYAL INSTITUTE OF TECHNOLOGY

- Eulerian-Lagrangian approach is used
- Only annular flow region of the pipe is modelled
- Liquid film slightly overpredicted towards the channel outlet

Predicted and Measured Mass Transfer Rates

ROYAL INSTITUTE OF TECHNOLOGY

- Deposition rate obtained in Eulerian-Lagrangian approach is shown
- The predictions agree fairly well with the correlation based on experimental data (Okawa)
- Stron over-prediction of the entrainment rate at the inlet

Experimental Data used in Validation of the Dryout Model

 Three experimental cases: uniformly heated tube with 14 mm ID, pressure 7 MPa, mass flux 500, 1000 and 2000 kg/m2s (Becker et al., 1983)

chnolog

KTH

ROYAL INSTITUTE OF TECHNOLOGY

• Run 262 (G = 2000 kg/m²s)

Application of the Models to Rod Bundle Geometry

- Conditions corresponding to BFBT experiments:
 - p: 70 bar
 - inlet drop velocity: 10 m/s
 - inl. drop vol. frac.: 6%
 - inl. liq. film thickn.: 0.1 mm
 - inl. liq. film vel. : 4.5 m/s
 - heat flux rods 1,2,4: $1MW/m_2$
 - heat flux rod 3: 1.2 MW/m²

Li and Anglart (2015)

OYAL INSTITUTI

Conclusions

- Significant progress in numerical methods (CFD) has been achieved during recent 30 years
- Better understanding of the governing phenomena
- Current approach:
 - for turbulent mixing: carefully validated LES
 - for DNB: modelling of small scales (nucleation sites, microlayer) and simulation of larger scales (bubbles, macrolayer, bulk)
 - for dryout: modelling of interfacial mass, momentum and energy transfer in annular flow, including liquid film breakup; simulation of gas core flow and 2D liquid film
- What is missing?
 - detailed experimental data allowing development and validation of sub-models and closure laws between scales and fields

Thank You!