

Warsaw University of Technology

Optimization of combined heat and power plant with heat accumulator: How we won a hackathon.

25th February 2020

Municipal heating systems Hackathon Results and conclusions

1. Municipal heating systems

Oskar Bieńko

Faculty of Power and Aeronautical Engineering

WARSAW UNIVERSITY OF TECHNOLOGY

Large - scale energy system:

- Power plant
- Heating plant
- CHP plant

The Rankine cycle: steam turbine system

Steam turbine unit

Steam condense turbine CHP unit

<u>M)</u>

Steam back-pressure turbine CHP unit

The Brayton cycle: gas turbine system

Source: https://qph.fs.quoracdn.net/main-qimg-af9fc305ea6848b52226b218e9d76e7e.webp

Gas turbine unit

Gas turbine CHP unit

CHP plant with hot water accumulator

Warsaw University of Technology

Source: https://torun.wyborcza.pl/torun/7,48723,21671359,nowa-elektrocieplownia-w-toruniu-za-550-mln-zl-juz-dziala-zdjecia.html?disableRedirects=true

Real-life CHP plant consists of:

- Gas turbine unit
- Steam condense turbine unit
- Steam back-pressure turbine unit
- Combination of above units

When using heat storage, we are:

- Covering the heat demand fully and
- Optimizing the profit and
- Reducing the number of starts.

Warsaw University of Technology

Source: TGE.pl, PEAK5_Y_21

2. Hackathon

Rafał Chabasiński

WARSAW UNIVERSITY OF TECHNOLOGY

Source: https://akceleratorpge.pl/hackathon

Place and time

- 13-14 December 2019 in AGH energy center, Cracow
- 20 hours to come up with the solution
- Efficient energy and time management
- Dealing with lack of sleep

Source: https://www.agh.edu.pl/centrum-energetyki/

Task

- 4 different heat and power units
- Heat accumulator
- Many restrictions, requirements and variables
- Satisfying heat needs for every hour of the year
- Maximing profit from heat and electricity production

Source: Hackathon EnergyHackOn materials

Python language

- Vast amount of libraries perfectly suitable for operating on data
- Conciseness and quick development
- Easy to debug (due to interpreter)

Warsaw University of Technology

ent)

Source: http://www.howcsharp.com/146/scipy.html

Restrictions and how to deal with them

- Power plants not available at certain times of the year
- Having to wait for power plants to be available again after stopping them
- Eliminating unavailable power units from algorithm

Warsaw University of Technology

1.14					
	Godzina	Pracujące jednostki			
	•••				
	2179	A	В		Akumulator c
	2180	A			

Source: Hackathon EnergyHackOn materials

Dealing with harsh situations

- Hourly demand for heat spikes and drops Always keeping accumulator level in certain safe zone
- Always meeting requirements, but at the same time maximizing the profit

Prioritising power units

- Eliminating constant switching between identical units
- Giving higher priority to very efficient and life-saving unit

Warsaw University of Technology

Source: EBSILON® Professional 12

Profit optimization

- Producing most energy and charging accumulator when price is high
- Discharging accumulator when price is low
- Avoiding often startups

3. Results and Conclusions

Jakub Banaszak

WARSAW UNIVERSITY OF TECHNOLOGY

Units' work time

Heat accumulator

Heat accumulator capacity vs energy cost (one month)

—Energy cost —Accumulator capacity

Heat accumulator

—Energy cost —Accumulator power

Warsaw University of Technology

Heat accumulator power vs energy cost (one month)

Hour of month

Heat generation

Warsaw University of Technology

Hour

Heat generation

Warsaw University of Technology

Heat generation (half a month - summer)

■ A ■ B ■ C ■ D ■ Accumulator

Hour

Heat generation

Warsaw University of Technology

Heat generation (problematic period – block B unavailable)

■ A ■ B ■ C ■ D ■ Accumulator

Hour

Electricity generation

Warsaw University of Technology

Electricity generation (half a month - winter)

A B C D

Successes

- 100% heat generation safety
- Units' availability is fully respected
- Times needed for startup are fully respected
- Partially optimized share of heat production

Warsaw University of Technology

Partially optimized cooperation with heat accumulator

Special thanks

Thank you for your attention

