A few elements on innovative nuclear fission concepts – the particular case of a ground-laying ADS (Accelerator-Driven System) and the Thorium Cycle

Leonardo VILA NOVA GONCALVES

NCBJ – Świerk Research Centre, 7th May 2019

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

Presentation Overview

• Instituto Superior Técnico (I.S.T.), Lisbon

University Master Level Degree, 5 years . Final specialization field (last 2 years out of the 5): automation, control and robotics.

- 1999 to 2004: CERN (European Organization for Nuclear Research), Geneva CH
- ST CV (Cooling and Ventilation) group under two consecutive (Research Associate and Research Fellow) contracts.

• present: Fyzikálni ústav AV CR, v.v.i (Institute of Physics of the Czech Academy of Sciences) / ELI Beamlines, Prague, Czech Republic.

Research activities on Laser Wake Field electron Acceleration (LWFA), a method aiming at the generation of ultrarelativistic electron beams in dense plasma by means of a very compact set-up when compared to conventional particle accelerators.

3

07/05/19

Source: (CERN-TS-Note-002 May 2004)

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research

 2009 – PhD, ENSM-SE 'Sciences et Génie des Matériaux' (in the fields of reactor physics and nuclear engineering).

'study of a 6 MW industrial prototype of a lead-bismuth subcritical ADS (Accelerator Driven System)'

• 1/2009 to 5/ 2010: University of Cambridge, UK

Postdoctoral Research Associate in the Department of Engineering Work in the field of the ADS: Identification and simulation of the physics of a number of design options for ADSRs driven by one or multiple accelerators, including ns-FFAG (non-scaling Fixed Field Alternating Gradient) accelerator concepts;

Fast Pb-Bi Reactor Technology

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

instytut kategorii A+, JRC collaboration partne

BUT ALSO: Thorium Cycle, ND, Monte Carlo neutronic codes...

07/05/19

Fuel Reprocessing Techn

• Energy in the world and the role of Nuclear

By 2050, the world's energy consumption $(\approx + 2\%/y) \bigstar$ Two main Factors: Population growth \mathfrak{C}^{∞} economic development development (Inevitable closing of the gap in per capita consumption between developed and developing countries) \bigstar should reach 34 TW, of which 20 TW should come from new energy sources;

Major technological and political innovations are needed in order to replace the expected "decay" of the traditional energy sources (mainly fossil fuels (Greenhouse effects); this R&D efforts to be deployed should not exclude any direction a priori:

Renewables

<u>Nuclear (fission and fusion -</u> not yet proven to be practical. Conceptual level not reached (magnetic or inertial confinement?). ITER a step, hopefully in the right direction.

Use of hydrogen

Nuclear fission energy is technologically well understood (\geq 50 years) experience, however, present scheme has its own problems:

Military proliferation (production and extraction of plutonium);

Possibility of accidents (Chernobyl [1986]; Three Mile island [1979].... Fukushima! [2011]);

Waste management

Extended life-cycle of existing units

Nucleus	Half-life (y)	Dose Factor (Sv/Bq)	Activity (Bq/kg)	Radiotoxicity (Sv/kg)
²³⁷ Np	2.14×10^{6}	0.11×10^{-6}	2.6×10^{10}	$0.3 x 10^4$
^{135}Cs	2.30×10^{6}	0.20×10^{-8}	4.2×10^{10}	0.8×10^{2}
²³⁹ Pu	2.41×10^4	0.25×10^{-6}	2.3×10^{12}	0.6×10^{6}
¹²⁹ I	1.57×10^{7}	0.11×10^{-6}	6.5×10^9	0.7×10^{3}
⁹⁹ Tc	2.11×10^{5}	$0.78 \mathrm{x} 10^{-9}$	6.3×10^{11}	$4.9 \mathrm{x} 10^2$

S

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research

instytut kategorii A+, JRC collaboration partne

Example: Annual Production of a PWR 1 GWe

• For the total 442 commercial reactors in the world and the 369.6 GWe (2005 data), an average 8077 t of waste are produced out of which 7675 t come from Uranium and the remaining 402 t are divided into 296 t of Fission Products (48 t LLFP), 94 t of Plutonium and 12 t of MA.

R a d i o t o x i c inventory of a used UOX fuel coming from a PWR 4 years after discharge (3.7% enriched ²³⁵U) with a combustion rate of 41.2 GWd/ tHM

Radiotoxological data for a few of the most important LLFP &Actinides

• Can Nuclear Energy play a major role?

Nuclear energy (specially if we consider the joining efforts to move to a new type of economy – Thorium) has the potential to satisfy the demand for a long time (at least 15 centuries for fission, essentially infinite for fusion if it ever works), and is obviously appealing from the point of view of atmospheric emissions.

Energy source	Consumption 2000 (10.2 GTep)	Consumption 2050 (22.5 GTep) *		
Fossil Fuels (Oil, Natural Gas, Coal)	7.6	7.6		
Hydro + Traditional	1.9	2.3 (+20%?)		
Nuclear	0.6	Х		
Renewable Sources such as SOLAR, WIND, Geothermal, Biomass, etc	0.2	Y		

• IF X=Y (renewables *30) \Rightarrow X=6 Gtep, i.e., *Nuclear should increase by *10* thus representing 27% of Total produced energy in 2050;

• IF Y=2 (renewables *10) \Rightarrow X=10 Gtep, soit i.e., *Nuclear should increase by *16* thus representing 44% of Total produced energy in 2050;

Conclusion, Nuclear energy will be <u>indispensable</u>, even for an overly optimistic clean scenario!

BUT: Which type of nuclear energy? However, it is not given by Nature, that the way we use nuclear fission energy today is the only and best way to do it. One should rather ask the question: *Could nuclear fission be exploited in a way that is acceptable to Society?*

• Nuclear Energy for the future

Present research in the field of fission is focused on improving safety, proliferation resistance, reducing waste radiotoxicity and providing independence from energy markets. Two types of facilities exist: (a) the evolutionary (GenIII), based on the development of previous designs and, (b) the innovative concepts (GenIV), where, beyond the complex technological challenges, new • manufacturing strategies and fuel management are required.

Generation III

Advanced LWRs

CANDU 6

System 80+

- AP600

high-temperature gas-cooled reactors.

Generation I

Commercial Power

PWRs

- BWRs

- CANDU

Dresden

Magno

Revolutionar

Designs

Sustainal

Economica

Proliferation

Physically

Resistant and

Generation III+

volutionary Design

ABWR

ACR1000

AP1000

ESBWR

APWR

- EPR

Deep underground disposal:

Risk of leaks (direct or indirect) to the biosphere – ex: ^{129}I ; Risk of proliferation; Heat Production by decay (degradation of containers and overdimensioning of the site); Technological difficulties; Costs: Contexts of future acceptability;

The concepts of subcritical reactors driven by accelerator (ADS) will open new avenues for waste management and nonproliferating nuclear fuel, including the thorium cycle.

lational Centre for Nuclear Research

• The ADS concept

The accelerator provides the High-Energy protons;
 Spallation produces a very intense neutron source;
 Neutrons are multiplied in the subcritical core.

Subcritical system driven by a proton accelerator:

• Subcriticality of the core leading to active safety;

• Fast neutrons (to fission all transuranic elements) due to the neutron economy; • Accepts less conventional fuels such as Thorium, MA and FF, for which the delayed neutron fraction is very small;

*²³²Th is more abundant than Uranium & weakly radioactive (minimisation of nuclear waste);

* Can be transmuted into fissile 233 U, by neutron capture+2 β -(neutrons come from fission of 235 U or 239 Pu or spallation reactions);

*Smaller production of long-lived actinides;

- *Less attractive for weapon construction;
- *Considerable reactor and reprocessing experience;

•Lead (Lead-Bismuth) as target to produce neutrons through spallation, as neutron moderator and as heat carrier;

Higher boiling point of coolants is traduced by safer and simpler operation;
Deterministic safety with passive safety elements (protection against core melt down and beam window failure).

Drawbacks

- □ Lack of operating experience;
- Construction of more powerful accelerators than existing ones;
- Window is a very critical issue;
- □ Innovative materials technologies;
- Development of new chemical P&S methods;
- Poorly known ND
- □ Thorium New economy!!

"For Christ's sake, Soddy, don't call it transmutation. They'll have our heads off as alchemists". [Ernest Rutherford, to Frederick Soddy on the discovery of thorium transmutation, 1901].

Type of neutron spectra: Fast / Thermal
Type of accelerator system: LINAC / Cyclotrons / NS-FFAG
Type of spallation target: Solid / Liquid
Type of coolant: Gas / Metal / Molten Metal / Molten Salts
Type of fuel: Solid / Liquid

□ ND, numerical codes, fuel development, material research, licensing, integration, etc

+

Type of neutron spectra

• Thermal spectrum leads to larger fission products poisoning and requires molten salt reactors;

• Fast neutron spectra allow easier incineration due to their larger fission cross-sections;

• The protactinium effect, which limits the achievable values of k, is less severe for fast spectra;

• In general reactor control is easier with fast spectra, especially for thorium based cycles;

• The inventory of ²³³U is much larger in fast reactors (about 7times)

Choice of Fuels

o Solid fuels and reprocessing techniques (especially oxides) are very well known and documented; Metallic fuels are promising when associated to pyrochemistry reprocessing;

• Due to progressive poisoning by FF, neutronics of solid fuels are not optimized;

• Liquid fuels like molten salts allow a continuous monitoring and optimization of the neutronics...however:

• Reliability and safety of the on-line processing of the salt for large reactors has to be demonstrated;

o Good properties of hastalloy against corrosion by the salt but...

o...to be verified for the very high irradiation doses expected with ADSR

• Fluorides are less corrosive than chlorides

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

instytut kategorii A+, JRC collaboration partn

Accelerator Options

Provide 10 mA, 1 GeV

LINAC (LEP 200 - CH)

□ No limitation of space Beam intensities in the 100 mA range are considered feasible

Expensive

Cyclotron (PSI - CH)

□ More compact and economical □ Potential Industrial-scale production Difficulty in providing beam intensities larger than 5-10 mA

NS-FFAG (Non-Scaling Fixed Field Alternating Gradient) (combines the simplicity of the cyclotron (the fixed field) with the flexibility of the synchrotron (variable energy), □Cost advantages

- □ Small beam losses
- □ More compact than Cyclotron
- □ Higher intensity beams
- **Future** technology

Full multistage Cyclotron? Hybrid Cyclotron-Linac? Trefoil of NS-FFAG?

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research

instytut kategorii A+, JRC collaboration partner

Spallation target

The spallation target has to provide the highest possible neutron yield, be transparent to neutrons, and at the same time sustain a large beam power of 10 to 20 MW.

Solid (Uranium, Tungsten, Lead)

• Heat produced within the target has to be conducted to the surface producing large axial gradients and radial stress;

• Water cooling is generally used – the cooling system can be contaminated;

• If significantly higher beam powers are required water cooling may not be adequate

• Shorter lives (*follow ESS progress)

Liquid (Hg, Lead*, LBE)

• Higher heat removal capability;

• Higher spallation material density in the volume due to absence of cooling channels;

• No or minimum amount of water;

• No life time limit caused by radiation damage;

• Significantly lower specific radioactivity;

• The inside pressure can be significantly lower than in water cooled system;

 $\circ\,$ Complex technology, $\,$ and safety issues - window is a critical part of the system $\,$

*Lead has a rather high fusion temperature, it might be difficult and costly to keep it in a fused state at all times.

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

07/05/19

Coolant Options

Coolants should have the following properties:

- Low melting temperature and high boiling temperature
- Low neutron absorption cross-section
- □ Radiation stability
- Low viscosity and density
- □ High heat capacity and thermal conductivity
- □ High thermal expansion coefficient
- Low chemical activity

Molten Salts

- Coolant and fuel simultaneously;
- Possibility of quasi online treatment and purification;
- Transparent to visible light, and thus allowing visual inspections;
- Even with solid fuels molten salts might be considered as an interesting option
- Great complexity of the system
- Corrosion problems

Ś

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

instytut kategorii A+, JRC collaboration partner

Gas (Helium, CO₂)

- Can be heated to high temperatures (> η);
- Minimizes neutron slowing-down;
- Easier inspection of the fuel during operation;
- No radiological concern
- High internal pressure operation
- □ Incompatibility with fuels containing carbon
- Complicated heat extraction in natural circulation for a LOCA

Sodium

- Considerable operational experience;
- Good thermal-hydraulic properties;
- \Box Low boiling point (1156 K) which arises safety concerns concerning coolant heatup.

□ High chemical activity with water, water vapor and air

Lead or LBE

- Both coolant and spallation target material;
- Neutron slowing down smaller than that of sodium;
- Chemical inertness;
- · Low working pressure of the coolant

LBE versus Lead

²¹⁰Po evaporation – 3 orders of magnitude less for Lead only
 Cost & reserves of bismuth – Lead is cheap & production is well organised

Corrosion at high temperatures – common problem

• Historical Proposals (Bowman [1991] and Rubbia [1993])

Bowman's Thermal Reactor at Los Alamos ATW (Accelerator Transmutation of Waste: The proton beam

interacts with a molten lead target surrounded by a heavy water pool. The molten salt fuel circulates within tubes inside the pool. Extraction of fission products and of ²³³U takes place outside the pool.

Concept	Concept Accelerator parameters			K _{eff}	K _{eff} Blanket power Spec	Spectrum C	Coolant Targ	Target	Fuels	
	Energy	Proton Energy	Current	Туре						
ADEP	100MW	1 GeV	100 mA	Linac	0.95	≈2300 MW	Thermal	Heavy Water	Lead	MS fluorides Th-U

Concept		Accelerator parameters			K _{eff}	Blanket	Spectrum	Coolant	Target	Fuels
	Energy	Proton Energy	Current	Туре		power				
EA (CERN)	10 MW	1 GeV	10 mA	Cyclotron	0.98	1500 MW	Fast	Lead	Lead	ThU

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research

High specified experiments at 0 power have been carried out to verify the fundamental physics principle of the EA systems:

 $(^{233}U \rightarrow Fission Fragments)$

• The First Energy Amplifier Test (FEAT) Experiment: Subcriticallity levels, Amplification, Gain, etc...)

• The Transmutation by Adiabatic Resonance Crossing *(TARC Experiment): Verification of LLFF incineration principle (*¹²⁹I, ⁹⁹Tc, etc...), Understanding of the spallation phenomenology in lead (neutron fluxes measurements by electronic detectors and by activation measurements); Development and validation of appropriate simulation and computing tools;

• The neutron Time-of- Flight facility (*nTOF*) project: Systematic measure of neutron cross section.

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK instytut kategorii A+, JRC collaboration partner

• Historical Developments

Concept		Accelerator parameters				Blanket	Spectrum	Coolant	Target	Fuels
XADS	Energy	Proton Energy	Current	Туре		power				
A ANSALDO	3.6 MW	600 MeV	3-6 mA	Linac	0.95-0 .97	80	Fast	LBE	LBE	MOX
B FRAMATOME	3.6 MW	600 MeV	3-6 mA	Linac	0.95-0 .97	80	Fast	Gas	LBE	MOX
C MYRRHA	1.75 MW	350 MeV	5 mA	Cyclotron	0.95	50	Fast	LBE	LBE	MOX

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

instytut kategorii A+, JRC collaboration partner

15

• The Project: a lead-bismuth cooled ADS Burner

Overview of the prjoct: Three different levels of validation of an ADS can be specified:

1 - Validation of the different component concepts, taken separately (accelerator, target, subcritical core, dedicated fuels and fuel processing methods). In Europe: The FEAT, TARC, MUSE & YALINA experimental programs and the MEGAPIE project are significant examples. ➡ IP-EUROTRANS...

<u>2 - Validation of the coupling of the different components in a significant environment,</u> e.g. in terms of power of the global installation, using as far as possible existing critical reactors, to be adapted to the objectives.

<u>3</u> - Validation in an installation explicitly designed for demonstration. This third step should evolve to a demonstration of transmutation fuels, after a first phase in which the subcritical core could be loaded with "standard" fuel.

Beam Pipe

• Studies on the reference configuration

Some of the main tasks concerning the simulations of the physics of the prototype :

- Benchmark testing of the code;
- Dimensioning of the spallation target;
- Construction of the Model for the Fluka Monte Carlo' Simulations;
- Study of the dynamic behaviour of the fission and the spallation neutrons;
- Reference configuration description and characterisation;
- Study of the ND sensibility;
- Determination of the neutron flux distributions;
- Determination of the radiation damage (dpa) on the structural materials (spallation target, beam tubes, vessels, fuel clad, etc);
- Calculation of the reactivity safety margins;
- Extensive studies of fuel burnup for different fuel mixtures being tested the prototype.

		Combustibles		
LEU	UPu	Th ²³³ U	Th ²³⁵ U	ThPu
		Compositions (%)		
		${}^{16}O 12.08 \\ {}^{17}O 0.4891 \times 10^{-2} \\ {}^{18}O 0.2726 \times 10^{-1} \\ {}^{232}Th 80.28 \\ {}^{233}U 7.606 \\$		$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$

instytut kategorii A+, JRC collaboration partne

• A few lines on the methods

Monte Carlo particle transport code are design to accurately simulate interaction of radiation with matter. The most well know codes are eventually MCNP(X) or GEANT 4, they are designed to track many particle types over broad ranges of energies. Their history goes back to the end of WWII. Their principle is repeatedly random sample to obtain numerical results of different outcomes.

Applications

Design of accelerator spallation targets Investigations for accelerator isotope production and destruction programs, including the transmutation of nuclear waste Research into accelerator-driven energy Design of shielding in accelerator facilities High-energy dosimetry and neutron detection Medical physics, especially proton and neutron therapy Charged-particle propulsion concepts for spaceflight Investigation of fully coupled neutron and charged-particle transport for lower- energy applications Transmutation, activation, and burnup in reactor and other systems Nuclear criticality safety Design of neutrino experiments

But: This codes are obviously highly dependent on available ND libraries. Nuclear Data ADS related issues and the discrepancies and certain deficiencies may be found between different databases (JEFF, JENDL, ENDF, etc) concerning in particular different isotopes and reaction channels of colossal importance for the studies of advanced nuclear systems (this importance can be greatly attested by the scientific efforts involved for example in the n_TOF experiment),

^{238, 234}Pu, thorium, americium, curium, structural materials such iron or bismuth or even the very conventional ^{233, 235, 238}U, or ^{239, 241}Pu outside the thermal regime.

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK instutu kategorijał-, JRC collaboration partner

• A few examples of the neutronic analysis/characterisation of the model #1

Sensitivity to ND

	Symbole	SVBR- ADS 600 MeV	SVBR- ADS 600 MeV	SVBR- ADS 600 MeV	SVBR- ADS 600 MeV	Unités
Paramétres Globales	-	$k_s = 0.95$ JAR	$k_s = 0.95$ JEFF	$k_s = 0.95$ JENDL	$\begin{aligned} \mathbf{k}_{\mathrm{s}} &= 0.95\\ \mathbf{ENDF} \end{aligned}$	
Mélange initial combustible	ThPu					
Masse initiale combustible	m _{cb}	17521	17521	17521	17521	Kg
Concentration initiale 232Th	m ²³² Th/m _{cb}	86.00	86.00	86.00	86.00	wt.%
Concentration initiale Pu	mPu/m _{cb}	14.00	14.00	14.00	14.00	wt.%
Puissance thermique délivrée	Pth	15.53	15.68	15.71	15.76	MW
Énergie du faisceau d/protons	Ep	600	600	600	600	MeV
Rendement des neutrons de spallation (yield)	N	14.81 +/- 0.11	14.81 +/- 0.11	14.81 +/- 0.13	14.81 +/- 0.11	n/p
Multiplic. neutronique nette	М	18.88 +/- 0.40	14.96 +/- 0.26	14.28 +/- 0.27	13.58 +/- 0.15	
Coefficient de multiplication	K=(M-1)/M	0.94704+/- 0.00109	0.93314 +/- 0.00113	0.92997 +/- 0.00129	0.92635 +/- 0.00083	
Gain d'énergie	G	29.30 +/- 0.63	23.06 +/- 0.41	22.09 +/- 0.42	20.84 +/- 0.26	
Coefficient de Gain	G_0	1.55	1.54	1.55	1.53	
Courant de l'accélérateur	Ip	0.88 +/- 0.019	1.13 +/- 0.020	1.19 +/- 0.023	1.26 +/- 0.016	mA

Table I: BoC parameters of the system in function of ND Databases

Combustibles	JAR (CERN)	JEFF-3.0 (EUR)	JENDL-3.3 (JAP)	ENDF/B-VI.8 (US)
LEU	0.9462	0.94071	0.92881	0.9449
(erreur)	±0.00061	±0.00106	±0.00063	±0.00042
∆k/k en pcm	-	-580	-1838	-137
UPu	0.94975	0.92406	0.92421	0.94259
(erreur)	±0.00114	±0.00136	±0.00104	±0.00112
∆k/k en pcm	-	-2705	-2689	-754
Th ²³³ U	0.94629	0.94596	0.94292	0.94252
(erreur)	±0.00103	±0.00062	±0.0009	±0.00065
∆k/k en pcm	-	-35	-356	-398
Th ²³⁵ U	0.95445	0.95561	0.93894	0.94603
(erreur)	±0.00081	±0.00094	±0.00078	±0.0008
∆k/k en pcm	-	+121	-1625	-882
ThPu	0.94704	0.93314	0.92997	0.92635
(erreur)	±0.00109	±0.00113	±0.00129	±0.00083
∆k/k en pcm	-	-1468	-1802	-2185

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

instytut kategorii A+, JRC collaboration partner

 Figure 1: the variation of the multiplication coefficient (ks) in function of the different ND, over the number of simulated protons (ThPu Case).

We can see systematic differences (0.02 - 2.000 pcm) between JAR and JENDL and also important deviations but lesser significant between JAR and JEFF or JAR and ENDF (values < 1000 pcm) with the exception of fuels containing plutonium.

For ThU fuels the divergences are smaller.

In conclusion, apart from good punctual convergences, the exactitude in the calculation of k is far from the desired precision. We can see also the surprising results for well known fuels LEU but then again, well known in the thermal spectra.

• A few examples of the neutronic analysis/characterisation of the model #2

$Th^{233}U$	JAR	JEFF	Δ_{JEFF}	JENDL	A JENDL	ENDF	A ENDF
Combustible							
Captures	55.25 %	55.34 %	+ 0.16 %	55.70 %	+ 0.81 %	55.85 %	+ 1.09 %
Fissions	43.67 %	43.52 %	- 0.34 %	43.26 %	- 0.94 %	42.66 %	- 2.31 %
n,xn	0.79 %	0.77 %		0.76 %		0.93 %	
Others	0.29 %	0.37 %		0.28 %		0.56 %	
Caloporteur							
Captures	69.44 %	67.49 %	- 2.81 %	65.71 %	- 5.37 %	64.72 %	- 6.80 %
n,xn	30.30 %	32.37 %	+ 6.83 %	34.16 %	+ 12.74 %	34.95 %	+ 15.35 %
Others	0.26 %	0.14 %		0.13 %		0.33 %	
Gaines de comb.							
Captures	84.94 %	83.62 %	- 1.56 %	86.12 %	+ 1.39 %	81.94 %	- 3.53 %
n,xn	4.40 %	3.70 %	- 15.91 %	3.91 %	- 11.36 %	6.09 %	+ 38.41 %
Others	10.66 %	12.68 %	+ 18.95 %	9.97 %	- 6.47 %	11.97 %	+ 12.28 %
Reflecteur							
Captures	98.99 %	98.87 %	- 0.12 %	99.13 %	+ 0.14 %	98.71 %	- 0.28 %
n,xn	0.28 %	0.26 %		0.26 %		0.42 %	
Others	0.73 %	0.87 %		0.61 %		0.87 %	
Structures							
Captures	100 %	100 %	0 %	100 %	0 %	100 %	0 %
Cible							
Captures	82.24 %	81.42 %	- 1.00 %	80.99 %	- 1.52 %	80.55 %	- 2.05 %
n,xn	16.56 %	16.99 %	+ 2.60 %	17.89 %	+ 8.03 %	18.06 %	+ 9.05 %
Others	1.20%	1.60 %		1.12 %		1.39 %	

■ Figure 1: Neutronic balance for the reactor core, reflector, target and reactor structures (Th²³³U).

ThPu	JAR	JEFF	Δ_{JEFF}	JENDL	Δ_{JENDL}	ENDF	Δ_{ENDF}
⁵⁰ Fe							
Captures	84.81 %	84.12 %	- 0.81 %	87.21 %	+ 2.84 %	84.22 %	- 0.69 %
n,xn	8.93 %	10.37 %	+ 16.13 %	6.99 %	- 21.74 %	9.62 %	+ 7.72 %
Autres	6.26 %	5.51 %	- 12.04 %	5.80 %	- 7.42 %	6.16 %	- 1.67 %
³² Cr							
Captures	82.90 %	65.82 %	- 20.60 %	87.34 %	+ 5.36 %	82.15 %	- 0.90 %
n,xn	10.47 %	0.00 %		7.37 %	- 29.56 %	11.45 %	+ 9.42 %
Autres	6.63 %	34.18 %	+ 415.19 %	5.29 %	- 20.33 %	6.40 %	- 3.57 %
N1							
Captures	67.55 %	69.95 %	+ 3.56 %	70.28 %	+ 4.04 %	69.95 %	+ 3.56 %
n,xn	0.33 %	0.23 %		0.17 %		0.34 %	
Autres	32.12 %	29.82 %	- 7.15 %	29.56 %	- 7.97 %	29.71 %	- 7.49 %

■ Figure 3: Neutronic balance for the isotopes of the fuel cladds (ThPu).

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

instytut kategorii A+, JRC collaboration partner

Th ²³³ U	JAR	JEFF	Δ_{JEFF}	JENDL	Δ_{JENDL}	ENDF	Δ_{ENDF}
²⁰⁴ Pb							
Captures	97.41 %	97.60 %	+ 0.20 %	97.94 %	+ 0.54 %	96.49 %	- 0.94 %
n,xn	2.59 %	2.40 %	- 7.34 %	2.06 %	- 20.46 %	3.47 %	+ 33.98 %
Autres	0.00 %	0.00 %		0.00 %		0.05 %	
²⁰⁶ Pb							
Captures	79.84 %	73.71 %	- 7.68 %	74.20 %	- 7.06 %	75.62 %	- 5.29 %
n,xn	19.79 %	26.18 %	+ 32.29 %	25.72 %	+ 29.96 %	23.89 %	+ 20.72 %
Autres	0.37 %	0.11 %		0.07 %		0.49 %	
²⁰⁷ Pb							
Captures	86.57 %	83.43 %	- 3.63 %	83.98 %	- 3.00 %	83.75 %	- 3.26 %
n,xn	13.20 %	16.51 %	+ 25.08 %	16.00 %	+ 21.21 %	15.86 %	- 20.15 %
Autres	0.23 %	0.06 %		0.02 %		0.39 %	
²⁰⁸ Pb							
Captures	17.93 %	13.62 %	- 24.04 %	13.15 %	- 26.66 %	14.44 %	- 19.46 %
n,xn	81.37 %	85.92 %	+ 5.60 %	86.24 %	+ 5.99 %	85.22 %	+ 4.73 %
Autres	0.69 %	0.46 %		0.61 %		0.34 %	
²⁰⁹ Bi							
Captures	62.47 %	63.55 %	+ 1.73 %	58.54 %	- 6.29 %	57.96 %	- 7.22 %
n,xn	37.28 %	36.28 %	- 2.68 %	41.33 %	+ 10.86 %	41.76 %	+ 12.02 %
Autres	0.25 %	0.17 %		0.13 %		0.28 %	

• Figure 2: Neutronic balance for the isotopes of the coolant $(Th^{233}U)$.

• A few examples of the neutronic analysis/characterisation of the model #3

■ Figure 1: Typical case of neutron flux distribution (a) radial, and (b) axial for the SVBR reactor and a ThPu fuel at E0600MeV/k=0.95

The low values in the reactor vessel illustrate both the good confinement inside the core and the efficiency of the coolant. The axial neutron flux presents the typical parabolic behaviour peaking at \sim 1.37 (particularly important for fuel elements close to the spallation target). A moderate ratio between medium and max values of flux due to the domination of fission neutrons above the entire neutron population, results into a better homogeneous utilisation of fuel.

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research SWIERK

Fuel evolution calculation – Burnup studies

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

• MOX as the initial fuel mixture

• Global Parameters of the system

Table I: Evolution of the main neutronic parameters for the SVBR75/100 reactor system, loaded with a MOX type fuel for a 900 day operation cycle at 80 MW_{th}.

Demonsteres Claberry	Symbole	SVBR75/100 BOC	SVBR75/100	Unités
Parametres Globaux		вос	EOC	
Mélange initial du combustible	MOX	(U –Pu)O ₂	$(U - Pu)O_2$	
Masse du combustible	m _{comb}	3793	3723	Kg
Concentration du plutonium	m_{Pu}/m_{comb}	17.9	17.4	Wt.%
Enrichissement fissile	M_{fiss}/m_{comb}	15.1	14.6	Wt.%
Combustion (burnup)		-	20	GWj/t
Longueur du cycle		-	900	jours
Puissance thermique délivrée	P_{th}	80	80	MW
Énergie du faisceau de protons	Ep	600	600	MeV
Rendement des neutrons de spallation (yield)	Ν	14.51 +/- 0.10	14.51 +/- 0.10	n/p
Multiplication neutronique Nette	М	27.80 +/- 0.56	14.77 +/- 0.65	
Coefficient de multiplication	K=(M-1)/M	0.9640 +/- 0.0007	0.9323 +/- 0.0011	
Gain énergétique	G	42.73 +/- 0.88	21.27 +/- 1.01	
Coefficient de Gain	G_0	1.54	1.44	
Courant de l'accélérateur	Ip	3.20 +/- 0.07	6.00 +/- 0.11	mA
	Distribution	s de puissance dans le cœur		
Densité moyenne de puissance du combustible	$P_{\text{th}}/V_{\text{comb}}$	255	255	W/cm ³

✓ During this period of operation the reactivity of the system drops by 2.94%, which is compensated by a factor two increase in the accelerator current to 6.0 mA in order to maintain a constant power output.

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

Figure 1: (a) Evolution of fissile enrichment level and the breeding ratio of the system over a 900-day burnup cycle

Figure 2: (a) Linear time evolution of the multiplication coeff. and the intensity of the proton beam current of the system over a 900-day burnup cycle; (b) Thermal power of the system. (Initial fluctuations are mainly due to the first days short-lived FF isotopes)

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

07/05/19

• The fissile enrichment drops during the cycle implies a^{A} is of a^{3288}

• Fuel consumption

 $\sim 19 \text{ kg/t};$

• The fissile enrichment drops during the cycle implies $a\Delta ks$ of ~3288 pcm (15.1% à 14.6%;) Pu (17.9% to 17.4%). The decline in the neutron multiplication brings about an increase of the accelerator current up tp 6 mA (~ 87.5% initial value) in order to keep the 80 MWth power level

Figures 1, 2, 3, 4 and 5: Isotopic evolution of the actinides of the system over a 900-day burnup cycle

Transmutation strategies

• Utilisation of a thorium-based fuel introducing Plutonium as seed to start the fission process, eliminating a significant amount of TRUs while producing energy based on the thorium fuel (Rubbia/CERN);

• Utilisation of an important number of heavily loaded of ADS with MA different fuel matrices, in a multi-strata configuration (JAERI)

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

- ThPuO₂ as the initial fuel mixture
 - Global Parameters of the system

Table II: Evolution of the main neutronic parameters for the SVBR75/100 reactor system, loaded with a ThPuO₂ type fuel for a 900 day operation cycle at 80 MW_{th}.

Paramètres Globaux	Symbole	SVBR-ADS BOC	SVBR-ADS EOC	Unités
Mélange initial du combustible		(Th –Pu)O ₂	(Th –Pu)O ₂	
Masse du combustible	m _{comb}	3666	3586	Kg
Concentration du plutonium	m_{Pu}/m_{comb}	20.2	18.8	Wt.%
Enrichissement fissile	M_{fiss} / m_{comb}	16.9	16.3	Wt.%
Combustion (burnup)		0	20	GWj/t
Longueur du cycle		0	900	jours
Puissance thermique délivrée	P_{th}	80	80	MW
Énergie du faisceau de protons	Ep	600	600	MeV
Rendement des neutrons de spallation (yield)	Ν	14.51 +/- 0.10	14.51 +/- 0.10	n/p
Multiplication neutronique Nette	М	27.47 +/- 0.75	17.67 +/- 0.65	
Coefficient de multiplication	K=(M-1)/M	0.9636 +/- 0.0028	0.9434 +/- 0.0011	
Gain énergétique	G	41.37 +/- 3.99	27.26 +/- 1.00	
Coefficient de Gain	G_0	1.51	1.54	
Courant de l'accélérateur	Ip	3.23 +/- 0.07	4.88 +/- 0.04	mA
	Distribution	s de puissance dans le cœur		
Densité moyenne de puissance du combustible	$P_{\text{th}}/V_{\text{comb}}$	258	258	W/cm ³

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

de -20

-40

-60

-80

Ó

5

in the second

Average Burnup (GWd/t of ThPuO2)

15

20

10

- Concentration of the main of the fuel, ²³²Th, ^{239, 240, 241, 242}Pu et ²⁴¹Am remains ~ constant over the whole duration of the cycle; • Important production of ²³³U (44.17 kg);
- Concentration of ²³⁸Pu increases by ~ 41% but...plutonium is reduced by ~ 66.3 kg;

0.1

0.01

0.001

25

• Augmentation (<1 kg) of the inventory of heavy actinides (²⁴³Am: + 352 g; ²⁴²Cm: + 372 g; Np: - 51 g).

Aver TH isot sum

Aver, PA isot, sum

Aver, U isot, sum

Aver, NP isot, surr

Aver, PU isot, sum

Aver AM isot sum

Aver, CM isot, sum

Average Burnup (GWd/t of ThPuO2)

15

Total Actinides

10

0.1

0.01

0.001

5

20

-20

40

-60

-80

25

•EoC of cycle:

- Plutonium 66.3 kg
- Neptunium + 51 g
- Americium + 505 g
- Curium + 405 g
- ²³³U + 44.17 kg

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

- Minor Actinides as the initial fuel mixture
 - Choice of the Fuel mixture

Figure 1: Multiplication coefficient for different fuel mixtures

• Independently of the coolant, it is difficult to reach criticality with a pure AM fuel;

• The addition of a 10% Pu to the metallic MA matrices can indeed contribute to a significant reduction of the critical mass of the system (from 3.2t to 2.5t);

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research

- Minor Actinides as the initial fuel mixture
 - Global Parameters of the system

Table III: Evolution of the main neutronic parameters for the SVBR75/100 reactor system, loaded with a Minor Actinide type fuel for a 5000 day operation cycle at 250 MW_{th} .

Paramètres Globaux	Symbole	SVBR-ADS BOC	SVBR-ADS EOC	Unités
Mélange initial du combustible		AM	AM	
Masse du combustible	m _{comb}	2164	802.4	Kg
Combustion (burnup)		0	600	GWj/t
Longueur du cycle		0	5000	jours
Puissance thermique délivrée	\mathbf{P}_{th}	250	250	MW
Énergie du faisceau de protons	Ep	600	600	MeV
Rendement des neutrons de spallation (yield)	Ν	14.51 +/- 0.10	14.51 +/- 0.10	n/p
Multiplication neutronique Nette	М	27.47 +/- 0.75	17.67 +/- 0.65	
Coefficient de multiplication	K=(M-1)/M	0.7863 +/- 0.0206	0.7577 +/- 0.0139	
Gain énergétique	G	4.29 +/- 0.66	4.96 +/- 0.43	
Coefficient de Gain	G_0	0.92	1.20	
Courant de l'accélérateur	Ip	64.56 +/- 2.99	83.87 +/- 2.82	mA
	Distribution	s de puissance dans le cœur		
Densité moyenne de puissance du combustible	P_{th}/V_{comb}	526	797	W/cm ³

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

Actinides (kg/TW.h) balance in the fuel	SVBR (AM) 600 GWj/t	SVBR (ThPuO ₂) 20 GWj/t	SVBR (UPuO ₂) 20 GWj/t	REP (UOX)
²³³ U		+25.56		
Plutonium	+ 11.12	- 38.31	- 8.4	+ 11.0
Neptunium	- 7.79	+ 0.03	+ 0.24	+ 0.57
Américium	- 46.77	+ 0.29	+ 0.17	+ 0.54
Curium	- 2.23	+ 0.014	+ 0.017	+ 0.044

• SUMMARY: (including burnup (+ 10% Pu)):

Bilan d'actinides (kg/TW.h de combustible)	SVBR (AM+Pu) 460 GWj/t	SVBR (AM) 600 GWj/t	SVBR (ThPuO ₂) 20 GWj/t	SVBR (UPuO ₂) 20 GWj/t	REP (UOX)
²³³ U			+25.56		
Plutonium	- 39.15	+ 11.12	- 38.31	- 8.4	+ 11.0
Neptunium	- 2.99	- 7.79	+ 0.03	+ 0.24	+ 0.57
Américium	- 2.98	- 46.77	+ 0.29	+ 0.17	+ 0.54
Curium	+ 0.62	- 2.23	+ 0.014	+ 0.017	+ 0.044

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

instytut kategorii A+, JRC collaboration partner

07/05/19

35

• A few preliminary conclusions concerning the ADS burner?

• Nuclear power represents a very well established technology of paramount importance for our common energetic future, all forms considered. ADS has been accepted by members of the nuclear community as a valuable concept for waste transmutation while producing electricity;

• A collaborative approach and effort is by far the most efficient way of developing sustainable nuclear technology and creating a new energy sector; it is therefore of the uppermost importance to make the maximum profit from worldwide available results of research, development and design work performed earlier;

• ADS and GenIV concepts development involves rather innovative technologies and fuel cycles and the validation phases ranging from different components separately to their coupling and the effective construction of an industrial installation are necessary;

• The prototype in question: The system is an important incinerator of Plutonium and waste, using a metallic matrix of MA fuel and plutonium; The system is an important incinerator of Plutonium using thorium oxide fuel, but a weak incinerator of plutonium for a MOX fuel. Note: A major advantage of this system is the speed of its implementation (existing foundational components), encouraging the active search for the necessary funds.

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

• APPENDIX – Outline of work in ADS performed in Cambridge

Extensive comparative analysis of the key technological features and challenges related to the existing ADS concepts.

> Participation on several financial analysis and road mapping, related to the perspective of building and operating a commercial ADS for the UK electricity market.

But also....

Table 1: Core design parameters.

Parameter	Value/Choice
Container vessel outer radius	3 m
Container vessel inner radius	2.9 m
Container height	4 m
Core active radius	2.5 m
Fuel pin height	2 m
Fuel pin outer diameter	1.2 cm
Cladding thickness	0.3 cm
Pitch	1.25 cm
Fuel material	85% ThO ₂ -15% PuO ₂
Coolant material	²⁰⁸ Pb
Cladding	316 stainless steel

Table 2: Spallation system design parameters.

Parameter	Value
Beam energy Beam spatial profile Spot diameter Target material Target diameter Target lenoth	1 GeV protons Parabolic ⁸ cm ²⁰⁸ Pb 32 cm 40 cm
Target containment vessel	316 stainless steel

Cross-section of the core models for the two configurations: (a) one-target configuration and (b) three-target configuration

	•		

The core consists of a hexagonal lattice immersed in lead and it is composed of 126 fuel assemblies, each loaded with 27 fuel pins. The fuel in the active core region is composed of 85% ThO₂ and 15% 239 PuO₂. (The addition of plutonium was necessary to achieve an operational multiplication factor of ~ 0.98 at the beginning of cycle). The ENDF/B-VI nuclear data library was used)

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

Cross-section of the core models for the two configurations: (a) one-target configuration and (b) three-target configuration

Although the symmetry of the power distribution has been broken, there are still a significant number of fissions in the assemblies around the target that has lost its beam. An overall reduction of 10% in the power generated is observed when compared to normal three-beam operation.

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

Thank you all for both your time and your attention !

leonardo.vilanova@eli-beams.eu

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

instytut kategorii A+, JRC collaboration partner