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Introduction 

 Modelling and solving design problems using complex 

economic/technical criteria needed in many fields 

 Progress in solving complex optimization problems 

 Growing capabilities/accessibility of digital technology 

 Achievements in mathematics & numerical methods 

 Numerical difficulties:  

 Complexity of the mathematical model describing a 

system being optimized 

 Calculation of the model laborious & time consuming 

 Truncation / round-off problems make the optimization 

process more difficult 



Institute of Nuclear Research/Institute of Atomic 

Energy, Świerk  

 IBJ, Department of Reactor Engineering, E-IX, 1962/69  – 

studies related to the planning of nuclear power 

programme, including optimization methods  

 Numerical methods for optimization – (IAEA fellowship, 

University of Birmingham, 1969/70) 

 IEA, Design Department, 1977/81 – analyses of thermal- 

hydraulic systems (practical applications: reactor for 

district heating, modernization of research reactor EWA) 

 Cooperation with other organizations/projects (Warsaw 

University of Technology, CHEMADEX) 

 



Part 1  

Formulation of the problem 



Specific features of thermal hydraulic problems 

  Optimization model 

 Objective function – combination of  indicators of technical and/or 

economic nature that describe the goal 

 State equations – representing general laws of physics (mass & energy 

balance, conservation of momentum, heat transfer conditions,…) 

 Constraints – Technical requiremnts (technological, structural, thermal, 

etc.) or physical (related to the physical meaning of the variable, 

limitations of the model, etc. ) 

Constructing the model 

 Balance nodes – distinct parts of the system (elements, devices or 

junctions of the system) encompassed within the balance barrier 

 Inter-node connections – used for modelling energy and/or mass transfer 

through the balance barrier  

 State variables – characterize inter-node connections (thermodynamics 

parameters)  

 Node characteristics – design parameters of subsystems/devices 



Mathematical formulation of the problem 

            Minimize a scalar function F(x),  

                   F(x*) = min F(x) 
                              x ϵ G 

                   G = { x ϵ Rn : φ(x) < 0, ψ(x) = 0 } 

Where:          φ(x) = φi         i= 1,2,…,m1 

                    ψ(x) = ψi         i= 1,2,…,m2 

                    F, φi , ψi :     R
n → R 

Comment:    For the design optimization problems m2 < n;  
           n - m2    –   the degree of freedom 



Specific features of thermal hydraulic problems 

Difficulties 

 Complex & nonlinear relationships for the state equations, 

objective function F and constraints φ, ψ –  

• Large number of nodes (i.e. # of equations & state variables ), 

• State equations, objective F, constraints  φ, ψ (majority) nonlinear 

 Significant execution time needed for calculating  F, φ, ψ 

 Desirable regularity conditions of the problem (e.g. the 

convexity of functions) impossibile to ascertain  

 Analytical representation of the gradients for the functions F, 

φ, ψ  practically imposible; calculating the gradients requires 

approximation by finite differences 



Specific features of thermal hydraulic problems 

Features that can help making the problem easier to solve 

 Structure of the model – inter-node connections limited (Jacobian 

of the state equations has a strip or triangle structure) 

 Part of the state equations linear with regard to certain variables 

(then, the equality constraints can be used to eliminate variables) 

 Proper formulation of the problem helps to reduce the effort for 

calculating the model  F, φ, ψ (therefore, also the effort of finding 

the solution)  

 Possibility to eliminate significant number of equality 
constraints (state equations) reducing the number of decision 
variables (therefore, also the effort of finding the solution) 

 Posibility to achieve a block structure of the algorithm for 
calculating  F, φ, ψ (reduces the effort for numerical 
approximation of the gradients) 



Example design problem  

(modernisation of the research reactor „EWA”) 

  e.
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Reactor cooling system - definition of balance nodes;

A, B, …, F - nodes connections; G, H, K, L - outside connection (environment)



Example design problem (research reactor „EWA”) 

  Definition of the state equations for the problem 



Research Reactor „EWA” - Algorithm for calculating the objective 

function & constraints – use of block structure of the state equations 



Numerical approximation of gradients –  

benefit of block structure of the model algorithm  

  

Comment: Benefits not limited to gradient aproximation; useful in calculating F(x) in any new point x = xo+ ei Δx 



Part 2  

Numerical methods of optimization 



Numerical methods for constrained optimization (ConOpt) 

 In general, optimization techniques can be divided into two 

classes – direct and indirect 

 Direct methods start at an arbitrary set of values of 

variables and proceed step by step towards optimum, by 

successive improvements 

 Indirect methods taking into accont the maximum 

knowlegde about the objective function and the domain of 

fisibility, usually in the form of analytic functions and 

inequalities, replace the original problem by others easier 

to solve. 

 Direct methods are easier to program and usually 

prefered by practitioners 



Numerical methods for constrained optimization (ConOpt) 

 Direct methods: 

              x(0), x(1), x(2),…, x(k), x(k+1) ,…, x*  

 Each iteration x(k) → x(k+1) includes two elements: 

1) Exploration of the model (values of functions  F, φ, ψ, their 
gradients, sometimes their second derivatives) usually in close 
neighborhood of the last point x(k) 

2) Correction of decision variables x(k) based on the results of 
exploration (conducted according to the pre-determined 
‘plan’/algorithm) 

 Initially the methods have been developed for unconstrained 
optimization (UncOpt), and then extended for the problems 
with constraints (ConOpt)  



Numerical methods for constrained optimization (cont.) 

Two groups can be distinguished in the direct methods: 

 Those which use the modification of the objective function 

 Modified function includes „penalty” terms added as a 
constraint is approached; typically the original problem 
(ConOpt) is converted into a sequence of unconstrained 
optimizations (in some methods only one) 

 Methods in which the direction of search is modified 
without altering the function 

 Usually they attempt to follow the active constraint or try to 
‘rebound’ from them and so continue the search in the 
feasible region 



Numerical methods for constrained optimization (cont.) 

‘Parameric’ penalty function methods  

            Φ(x, r) = F(x) + P ( c(x), r ) 

P    – Suitably defined skalar function  

c(x) - Constraints (equality ψ(x) = 0 and inequality φ(x) < 0 ) 

r     – Vector of parameters that regulate ‘penalizing’ effect of P   

    If the values of variable x that minimize Φ(x, r) is ξ (r) then  
ξ(r) is the solution to the constrained problem:  

minimize F(x) subject to the constraints cj(x) = cj[ξ (r)] 

   Then, to find the solution of the original constrained problem it 
is necessary to obtain values of the parameters r such that  

                       Ψj[ξ (r)] = 0 ,       j = 1, 2,...,m1,     

                       φj[ξ (r)] < 0,        j= m1+1,m1+2,…,m 



Numerical methods for constrained optimization (cont.) 

  Penalty function of Powell  (1968)  for the problems with 
 equality constraints (ψ(x) = 0) 

Φ(x,σ,Θ) = F(x) + [ψ(x) + Θ ]T S [ψ(x) + Θ ]  

 where:   σ = (σ1 , σ2 , …, σm )  ;  Θ = (Θ1, Θ2,…, Θm ) - parameters 

               S – diagonal matrix m x m with elements σi > 0 

 If ξ 
(k)   is the solution to the unconstrained problem of the 

function  Φ(x, σ(k), Θ(k))  and  σi
(k)

 , i=1,2,..., m  are sufficiently 
large then the formulas: 

                σ(k+1) = σ(k)          and      Θ(k+1)
 = Θ(k) + ψ(ξ 

(k))  

 ensure linear convergence at as fast a rate as is required.  

 If the convergence is too slow then: 

                σ(k+1) = ω σ(k)     and     Θ(k+1)
 = Θ(k)/ω     where ω >1 



Numerical methods for constrained optimization (cont.) 

 Powell’s algorithm (1968) – can be extended for problems 

with inequality constraints:  

 By the use of additional variables (‘slack variables’) and 
converting the inequality constraints:         

                                             φj(x1,…,xn) < 0 ,    j=1,…, m1,   

     into equality constraints   ψ(x) = φj(x1,…,xn) + xn+j
2 = 0 ; 

 By the use of 'penalty’ function (Michalski, Szymanowski, 1970) 
                                                                                                      m 

                                Φ(x,σ,Θ) = F(x) + Σ  σj [φj(x) + Θj]  max [0, φj(x) + Θj] 
                                                                                                                   j=1 

         where the formula:    Θ(k+1)
 = Θ(k) + ψ(x*(k)) 

 is replaced by:           Θj
(k+1) = max { 0, Θj

(k) + φj(x*(k)) } ,  j=1, 2,…,m 

 Version developed by Wierzbicki (1971) - improves behaviour of 
the algorithm in ‘peculiar’ situations  



Penalty function with ‘shifting’ the penalty term –  

 geometric interpretacion 

 f j (x)   f j (x
*1)  f j (x

*k)  f j (x*) = 0 

 F (x*) 

 - Θ j
k
  

 F (x*k) 



Numerical methods of optimization –  
IAEA Fellowship, Birmingham University, 1969/70 

 Analysing and selecting most suitable algorithms  

 Coding and testing the selected algorithms (FORTRAN, emc  

KDF9 and IBM 1130);  

 Comparison of methods and computer codes 

 Constrained problem – method of Powell’s penalty 

function (with ‘shifting’ of the penalty term) (Powell, 

1968); use of ‘slack variables’ 

 Four methods used for unconstrained minimization: 

 Rosenbrock, 1960 – ‘Orthogonal directions’ (code COROS) 

 Davies, Swan, Campey, 1965 ;  (code DISCON) 

 Powell, 1968 – ‘Conjugate directions’; (code  PCON) 

 Stewart, 1967 ‘Variable metric method’  (code CONVAR) 



Selected methods for unconstrained minimization -

overview 

  Rosenbrock’s method  - attempt to find the direction of ridge and     
 considering it as ‘promissing’ search direction 

 Starting point:                                   xo ;     Φo = Φ(xo) 

 n orthogonal directions:                     ξ 1, ξ 2, …. ξ n 

 Series of searches along these directions (with given step ei): 

• x i = x i + ei ξ 1,       Φ = Φ(x)  

• if Φ < Φ o   ‘successfull step’      Φo = Φ;      ei = α ei  ;            ( α > 1)   

• if Φ > Φ o   ‘unsuccessfull step’                    ei = - β ei ;     ( 0 < β < 1) 

 This search is continued in each direction ξ i in turn until at least one trial is 
‘successful’ in each direction, and one has failed 

 ξ 1 is replaced by    ξ*
1 = Σi

n di ξ i ,   where  di (i=1, 2,…,n) – the algebraic sum of all 
sucessive steps ei in the direction  ξ i  

 The remaining new search directions are obtained by orthogonalization  process, and 
the iterative process is repeated  

  DSC (Davis, Swan, Campey) method  -  analogical to Rosenbrock’s              
 method, but using unidimensional minimization along the directions  



Selected methods for unconstrained minimization –

overview (cont.) 

  Conjugate directions method of Powell  (1964) 

 If the directions  ξ 1 , ξ 2 ,…, ξ n   are mutually conjugate with 

respect to the positive definite (psd) quadratic objective 

function 

                           Φ(x) = c + bT x + ½ xT G x  

 than the minimum of this function can be found by 

 minimizing the function along these directions n times  

 Comment: Directions p i q  are defined to be conjugate with respect 

 to the psd quadratic objective function, if they are both non-zero, 

 and if they satisfy the condition:  

     pT G q = 0   



Selected methods for unconstrained minimization –

overview – cont. 

   Conjugate direction method (Powell, 1968),  

 Powell’s iteration requires:   

• n independent search directions ξ 1, ξ 2,…,ξ n (initially the 
coordinate directions) and starting point  x0 ; 

• „n” minimizations along each of the search direction in turn, 
changing the estimate  x o→ x ,   Φ(x) < Φ(x0)  

• new search direction  ξ = x – x o  replaces one of the base 
directions in each iteration (version I of algorithm),  

 If function Φ(x) is (psd) quadratic function, then n iterations will find 

the minimum; the search directions become mutually conjugate. 

 In version II (1968) special measures are taken to retain linear 

independece (therefore, more than n iteration may be required) 



Conjugate direction method (Powell 1964) 

  Example explaining how the conjugate directions are generated 



Selected methods for unconstrained minimization –

Stewart’s method 

Algorithm of Stewart (1967) – an extension of DFP  (Davidon,  
Fletcher,  Powell, 1963) – originally called „the variable metric” 
method is also a conjugate direction method  

The kth iteration of Davidon’s method changes the estimate xk to the 
estimate xk+1 by searching for the minimum of the objective function 
along the direction defined by vector  

                                          d k = – Hk g k     

where:  Hk ϵ R
nxn   equivalent of the matrix G-1  used in Newton’s   

  method (the matrix of second derivatives [ 2Φ(xk) ]
-1 ,   

            g k     –   gradient Φ(xk )  

Vector of variables is updated according to the formula: 

                                                         αk = arg min Φ(x k + αk dk)  
                                                                      αk > 0  

 



Selected methods for unconstrained minimization –

Stevart’s method,  (cont.)  

Matrix H is updated in each iteration using the formula: 

 

         VM DFP 

 where:  

 

 Fletcher & Powell provided theoretical bases of this algorithm:  

 If the matrix  H1 is initially chosen to be psd, then  this property is 
retained by the subsequent matrices  

 If Φ(x) is a psd quadratic form, then the iteration terminates after at 
most n iterations (quadratic convergence  property) and  the matrix 
Hn+1  is the inverse of the second derivative matrix of the objective 
function Φ(x)  (Hn+1 = G-1 ) 



Selected methods for unconstrained minimization - 

Stevart’s method,  (cont.)  

   In Stewart’s algorithm the first derivatives are approximated 
 by finite differences: 

              ∂Φ/∂xi  = [Φ (x+hi ei ) – Φ (x)]/hi ,           i = 1, 2, …,n 

where:  hi  approximation step, and  ei  is the unit vector, with  
       its i-th component of unity and its other components 0. 

The formula of central differences is used at certain situations: 

             ∂Φ/∂xi  = [Φ (x+hi ei ) – Φ (x-hi ei )]/(2hi),    i = 1, 2, …,n 

Approximation step hi is calculated with a view to balancing 
truncation and round-off errors;  taking into account the 
curvature of Φ along the direction  ei ,  given as diagonal 
elements of matrix  Λ = Hk+1

-1,  (calculated using a recurence 
formula  depending on  gk, γk, Hk )    



Numerical methods for constrained optimization 

IAEA Fellowship, Birmingham University, 1969/70 

  Analysis of selected methods and development of the  
 computer codes   

   Comparison of methods; limited number of testing 
 problems 

 

     *)  NL – nonlinear,   SNL – strongly nonlinear,   KW - quadratic 

 

Characteristic feature Number of constraints 
Problem 

designation 
Author 

Objective f Constraints 

Number of 
variables 

(n) 
Total 

 (m) 

Inequalities 
(m1) 

T1 MK 1970 NL KW 2 2 2 

T2 MK 1970 KW NL 3 3 3 

T3 MK 1970 SNL NL 12 3 3 

HEX MK 1970 SNL SNL 3 3 3 

 



Numerical methods for constrained optimization –  

 IAEA Fellowship, Birmingham University, 1969/70 

Conclusions   

    Effectiveness of the selected method of dealing with 
 constraints confirmed; (‘Penalty function with shifting’, 
 Powell, 1969);  
    Unconstrained minimization methods based on ‘variable 
 metric’ formulas;  (Stewart,1967 /CONVAR code) seemed 
 to be very promising  

 

Problem T1 Problem T2 Problem T3 Problem HEX Program 
name N i* N f** N i* N f** N i* N f** N i* N f** 

COROS 6 1019 5 1758 6 9787 5 3138 

DISCON 6 986 4 1233 6 6246 2 2134 

PCON 6 580 4 776 6 7013 3 1798 

CONVAR 6 359 4 381 6 1925 2 768 

*)       Number of iterations (unconstrained minimizations) UnOpt 

**)   Total number of calculations of the model (i.e. objective function and constraints)  

 



Numerical methods for constrained optimization –  

IEA Świerk, 1971 - 79 

 MINCON code developed in IAE in 1970-s uses the algorithm of 

Wierzbicki (1971),  modified to handle equality and inequality 

constraints (based on Powell, 1968;  Michalski et al, 1970) 

 

 

 

 

where: J1 set of indices j for inequality constraints    φ j(x) < 0 

            J2 set of indices j for equality constraints      ψ j(x) = 0  

Modification of penalty parameter Θ based on the formula:  

                Θj
(k+1) = max [ 0, φ j(x*(k)) + Θj

(k) ]        j ϵ J1  

                Θj
(k+1) = ψ j(x*(k)) + Θj

(k)                                    j ϵ J2 



Constrained optimization method (MINCON Code) 

   MINCON code – Constrained Optimization (Wierzbicki,1971) 

   Four situation depending on the degree of exceeding the 
 constraints:  

   ‘Unacceptable’    and  ‘Acceptable’  

       Defined in terms of two sets:  

       Gd = { x ϵ Rn:  hj < d(k) ; j=1,2,…, m }        unaccceptable 

       Gc = { x ϵ Rn:   hj < c(k) ; j=1,2,…, m }        acceptable 

where:       d(k) > c(k) > 0 

                h j = f j(x
(k)) ;                  j ϵ J1        inequality constraints 

                        h j = abs [f j(x
(k))] ;         j ϵ J2         equality constraints 



Constrained optimization method (MINCON Code) 

 
A  

A 

 
B  

B 

 START 

 σ = σ s ,    Θ = 0,   d = rD εy ,   c = rA d 

NI = 0,  x0 = xs 

 
Minimize the function  Φ(x, σ, Θ) with regard to x  (Unc. Opt. probl.) 

Φ(x, σ, Θ) = F(x) + Σ σ j [ f j (x)+ Θ j ] max[ 0, f j (x) + Θj ] + Σ σ j [ f j (x)+ Θ j]2 
                                                    j ϵ J 1                                                                                     j ϵ J 2  

J 1 = { 1, 2,…, m 1 } ;    J 2 = { 1 + m 1, 2 + m 1,…, m } 

Starting point:       x = x0 ;      Solution:  x* 

 
h j = f j (x*) ,   j ϵ J 1 ;       h j = abs [ f j (x*) ] ,   j ϵ J 2 

 
NI = NI +1,       x0 = x* 



Constrained optimization method (MINCON Code) 



Effectiveness of the selected codes for unconstrained 

minimization (Himmelblau, 1971)  

Total number of calculations of the function needed for the solution (cited by Himmelblau, 1971) 

Optimization algorithm (UncOpt) 

Powell, 1964 Stewart, 1967 Problem Author 
Charact. of func. /  

Number of variables Hook, 
Jeeves 

Nelder,
Mead 

Rosen-
brock QI GR QI GR 

HM-1 Zangwill,1967 Polynomial 2-dg./ 2 80 185 62 29 218 16 84 

HM-2 White,Holst,1964 Polynomial 6-dg./ 2 651 359 294 284 156 256 194 

HM-3 – Polynomial 3-dg./ 2 640 190 163 24 220 a a 

HM-4 Beale,1958 Polynomial 6-dg./ 2 205 230 218 134 396 f 161 

HM-5 Engwall,1966 Polynomial 4-dg./ 2 64 210 119 96 264 119 137 

HM-6 Box, 1966 Sum of sq exp./ 2 498 268 314 161 278 177 406 

HM-7 Zangwill,1967 Polynomial 2-dg./ 3 130 810 297 84 502 37 108 

HM-9 Engwall,1966 Sum of sq nl terms./3 81 561 457 315 652 150 304 

HM-10 Fletcher,1963 Strongly nonlinear/ 3 1230 566 513 48 277 191 430 

HM-11 Bard,1970 Sum of sq nl terms./3 – 711 – 102 174 134 198 

HM-12 Powell,1964 Polynomial 4-dg./ 4 77 1022 801 966 1783 622 1117 

HM-13 Crag, Levy,1969 Strongly nonlinear / 4 9283 563 955 3480 3103 1662 3749 

HM-14 Wood Polynomial 4-dg./ 4 836 797 1043 276 850 715 905 

QI  -  Linear minimization along the search direction  - using quadratic interpolation 
GR  -  Linear minimization along the search direction  using 'golden ratio"  
a  -  converge to global solution ( – ∞);      f  - solution not found 



Numerical methods for Unconstrained Optimization —  
Comments/conclusions with regard to the effectiveness 

 UncOpt methods tested in 1970 r. (IAEA Fellowship)  

 Repeating linear minimizations; process ‘expensive’ with 
regard to the effectiveness (in terms of function evaluations): 

• PCON (Powell)  &  DISCON (Davis, Swan, Campey) —  

 n+1 or n times in each step (iteration) 

• CONVAR (Davidon, Stewart) — once in each iteration 

 CONVAR requires numerical approximation of gradient of 
the function Φ - (n+1 additional evaluations of Φ, or more, if  
central differences are needed) 

 Approximation of gradient of Φ may be made less laborious, 
when the algorithm used for calculating the model (functions 
Φ(x), φ(x), ψ(x) has a block structure. 



Numerical methods of Unc Opt — comments / 

conclusions with regard to the effectiveness 

 Favorable feature of CONVAR code (or other methods based 

on ‘variable metric’ approach) is possibility of using the 

second order information accumulated in the subsequent 

iterations of ConOpt (transferred in the form of matrix H); 

this has a positive impact on the effectiveness : 

 

 Calculating the matrix    Hk+1 = (Gk+1) 
-1  does not require 

inverting the matrix Gk+1; it is calculated recursively by 
application of the following formula: 

 

 

        for 



Numerical methods of Unc Opt —  

increasing the effectiveness of the calculation 

 Use of algorithms that eliminate the need for linear 
searches, e.g. those based on the rank one formula: 

 

              VM (1) 

 Unpleasent side effects of this formula: 

• The matrices H no longer remain psd 

• The correction term may happen to be unbounded 

• The matrix may become singular or undetermined   

 Thus, the use of this correction requires that sometimes  
a special strategy is needed, which makes the routine 
operations more complicated 



Numerical methods of Unc Opt —  

increasing the effectiveness of the calculation 

 Davidon’s new method (Version II, 1968) 
             

          

         VM (2) 

• Matrix H* is kept psd by a suitable choice of λ; its value depends on 
the parameter: 

 

 

• Typically the parameter λ is such that the formuła VM (2) remains 
identical to the rank one formula VM (1); however, in certain 
conditions λ is different, and its choice is intended to prevent 
unwarranted extrapolation about the behaviour of the function Φ 



Numerical methods of Unc Opt —  

increasing the effectiveness of the calculation 

 Version II of Davidon’s method (1968),  cont. 

• (a)       if 

• (b)       if 

• (c)       if 

• (d)        otherwise, (in this case formulas                                   

       VM1 i VM2 become identical ) 

• The algorithm terminates when:   

 



Numerical methods of Unc Opt —  

increasing the effectiveness of the calculation 

Fletcher’s algorithm (1970) – other, new formula for 
correcting the matrix  H: 

               VMFL 

The matrix defined by the formula VMFL is ‘less singular’ as 
compared to the original DFP (formuła VMDFP), but may cause H* 
to tend to become unbounded. For this reason Fletcher proposed 
to use the convex combination of the formulas VMDFP i  VMFL: 

 

Where:  0 < φ < 1 

             φ = 0         if 

             φ = 1         if 



Numerical methods of Unc Opt —  

increasing the effectiveness of the calculation 

Fletcher’s algorithm (1970), cont. 

Abandonment of linear searches requires some means to retain   
a sufficiently large decrease of Φ in each iteration. 

αk = 1 only if the condition 

is satisfied,  where 

If the left hand side inequality is violated than αk is calculated  by 
cubic interpolation. If αk is too small and the right hand side 
inequality is violated then αk = 1/w, 1/w2,…, where 0 < w <1 

In addition, the value of αk  needs to satisfy the condition δ
Tγ > 0, 

if this condition is not satisfied then the values αk/w, αk/w2,…, 
are tried.  

The algorithm is terminated when:  



Numerical methods of optimization - improving effectiveness 

and reliability of the calculation 

Termination criteria – important element of the algorithm 

(1)  

(2a) 

(2b) 

(3) 

x , x* — Values of variables in two subsequent iterations 

εΦ , εi , εx , εG — constant parameters 



Numerical methods of optimization - improving 

effectiveness and reliability of the calculation 

Termination criteria (constrained optimization algorithm) 

Making the parameters ε, εΦ  dependent on the difference 

between the function value F  found in the iteration k  and the 

estimated value of the function at the solution point 

                                  ;                                ; 

 

 

J – The set of indices corresponding to the active constraints 

Another useful criterion: 

x, x* -  Values of variables in two subsequent iterations of      
  unconstrained optimization 

 



Development of MINCON code (cont.) 

Selecting algorithm for unconstrained optimization  

Testing 3 algorithms for Unc Opt considered most promissing 

  Davidon’s  formula 1968 (VM2) –        MIDAS  code 

  Fletcher’s formula 1970 (VMFL) –        MIFLE  code 

  Coniugate Gradients of Powell 1968 – MINPO code 

  MIDAS & MIFLE differ in some details as compared to the original 
routines (e.g. definition of starting matrix H, redefinition of H in 
‘abnormal’ situations, termination criteria for UncOpt, etc. ) 

 Testing problems (13) according to Himmelblau, 1971; comparison of 

the effectiveness using the same criteria (CYBER 70, single precision) 

 Numerical experiments included the investigation of effects of 

changing the values of parameters used in these algorithms 



 

 

Results of numerical tests – comparison  

of unconstrained optimization codes  

 
Himmelblau,1971 Kulig,1980 

Problem Author 
Objective function/ 

Number of variables 
Powell Stewart  MINPO 

Powell,1964 
MIDAS 

Davidon 
MIFLE 

Fletcher 

HM-1 Zangwill,1967 Polynomial 2-dg./ 2 29 16 30 - 35 9 - 15 6 

HM-2 White, Holst,1964 Polynomial 6-dg./ 2 284 256 177 - 228 108 - 238 163 

HM-3 – Polynomial 3-dg./ 2 24 a 38 - 42 19 - 48 35 

HM-4 Beale,1958 Polynomial 6-dg./ 2 134 f 118 - 123 44 - 152 60 

HM-5 Engwall,1966 Polynomial 4-dg./ 2 96 119 72 - 73 41 - 68 48 

HM-6 Box, 1966 Sum of sq exp. terms/ 2 161 177 87 - 93 64 - 153 119 

HM-7 Zangwill,1967 Polynomial 2-dg./ 3 84 37 78 - 79 96 - 144 37 

HM-9 Engwall,1966 Sum of sqs nl. terms./3 315 150 201 - 225 109 - 228 155 

HM-10 Fletcher,1963 Strongly nonlinear/ 3 48 191 188 - 190 154 - 287 220 

HM-11 Bard,1970 Sum of sqs. nl. terms./3 102 134 142 - 190 93 - 115 166 

HM-12 Powell,1964 Polynomial 4-dg./ 4 966 622 414 - 517 212 - 314* 284* 

HM-13 Crag,Levy,1969 Strongly nonlinear / 4 3480 1662 524 - 848 216 - 500* 674* 

HM-14 Wood Polynomial 4-dg./ 4 276 715 688 - 951 172 - 307 725 

a  -  Converge to global solution ( – ∞);      f  - Solution not found 
*) Accuracy of the solution ∆x ~ 10-3  too low (∆x ~ 10-4 – increases the number of function evaluations ~50%) 



Results of numerical tests – comparison  

of constrained optimization codes (MINCON & MIPOW) 

 

  Probl. Author 
Probl. 
features 
Obj. f./ constr. 

n m1/m2 MIPOW MINCON 
Other 
codes 

Comments 

K1 Rosenbrock,1960 NL / L 3 8/ 0 307/2 250/2 310 - 576  Box, COMPLEX; εx~E-7 

K2 Box, 1965 SNL / L 2 5/ 0 122/4 75/4 159  Box, COMPLEX; εx~E-6 

K3 Kulig, 1970 NL / L 2 2/ 0 228/5 90/5 580/ 359  PCON/CONVAR 

K4 Kulig, 1970 KW / L 3 3/ 0 261/5 157/5 776/ 381  PCON/CONVAR 

K5 Szymanowski,1972 NL / NL 2 3/ 0 261/4 137/4   

K6 Szymanowski,1972 NL / NL 2 5/ 0 118/3 68/3   

K7 Szymanowski,1972 NL / NL 2 6/ 0 282/7 163/7   

K8 Powell, 1968 SNL / NL 5 0/ 3 493/3 294/3   

K9 Box, 1965 NL / KW 5 15/ 0 828/5 556/5 1440  Box, COMPLEX; εx~E-4 

K10 Kulig, 1972 SNL / NL 20 2/ 4 12220/8 1049/8   

K11 Kulig, 1972 KW / KW 6 6/ 2 955/6 458/8   

K12 Kulig, 1972 NL / KW 40 2/ 0 4635/6 2288/6   

EWA Kulig, 1980 SNL / NL 6 11/ 0 1371/4 630/5   

 TURB Kulig, 1979 SNL/SNL 16 0/ 11 7509/7 7249/7   

            L – linear function,  KW – quadratic function,   NL – nonlinear function,    SNL – function strongly nonlinear  
 

 



IEA work – Conclusions / discussion 

 Numerical tests confirmed the effectiveness of the penalty 
function method (with penalty ‘shift’ by Wierzbicki, 1971); 
consideration of active constraints 

 Converting inequality constraints into equations using the 
‘slack variables’ should be used with care (effectiveness, 
reliability ? ) 

 ‘Variable Metric’ (VM) methods of UncOpt more effective  
as compared to the conjugate gradient methods 

 Potential ‘savings’ in the approximation of gradients 
(when algorithm of the model has a block structure) 

 Possibility of easy transfer of second order 
information on the function (in the form of Hessian) 
from one constrained iteration into the next 



IEA work – Conclusions / discussion, (cont.) 

 Algorithms based on VM formulas are more sensitive for the 

effects of truncation/ round-off, and incorect estimation of 

Hessian matrix (both in starting and in subsequent updates) 

 Gradient approximation - arbitrary definition of intervals 

more reliable than automatic selection proposed by Stewart.  

 Termination criteria for Unc and Con Opt – important 

element of the algorithm; parameters related to ‘accuracy’ 

should depend on the iteration, i.e., based on the estimated 

difference of the function  ΔFk= F(xk ) – F(   ) 
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Part 3 

 

Numerical optimization methods –  

Achievements in the field  

 

What has changed in the field of NLP since 1970s ? 



What has changed in the field of NLP since 1970s ? 

   Well established infrastructure for the development 
 and practical implementation of algorithms 

  Enhanced capabilities of computer hardware  

  Software libraries 

  Benchmarking guidelines and tests 

   Significant achievements in numerical analysis/ 
 mathematical programming — new theoretical  
 discoveries / ideas, convergence analysis, etc. 

   Wide selection and availability of NLP optimization 
 algorithms 

   Increased a role of mathematicians and mathematical 
  software specialists in the development of software (?) 



Existing Software Libraries 

 Several recognized software libraries: 

 IMSL, Rogue Wave Software Library, Inc. (USA, UK, Germany, 

France, Japan),   www.vni.com  

 NAG High Performance Computing services,  

 https://www.nag.co.uk/content/high-performance-computing-consulting-and-services 

 NLopt - a free/open-source library for NLP started by S. G. 

Johnson,  https://nlopt.readthedocs.io/en/latest/ 

 AERE, Harwell Subroutine Library, England 

 Universities, UK — Cambridge (DAMTP), Dundee 

                    USA — Princeton, Stanford 

http://www.vni.com/
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://www.nag.co.uk/content/high-performance-computing-consulting-and-services
https://nlopt.readthedocs.io/en/latest/


Benchmarking of algorithms 

 Well established standards and guidelines  

 - reasons for benchmarking, - selecting the test set, - performing 

    the experiments, - analysing and reporting the results, etc. 

 Availability of appropriate benchmarking tests 

 Cornwell, L.W., et al. „Test Problems for Constrained mathe-

matical programming algorithms”, ANL-AMD-TM-320, July 1978. 
https://www.osti.gov/servlets/purl/6576051 

 K. Schittkowski, „306 Test Problems for Nonlinear Programming 

with Optimal Solutions, User Guide”, 2009. 

 http://www.klaus-schittkowski.de/tpnp.htm  

 The CUTEr/st Test Problem Set, 
http://www.cuter.rl.ac.uk/Problems/mastsif.shtml 

https://www.osti.gov/servlets/purl/6576051
http://www.klaus-schittkowski.de/tpnp.htm
http://www.klaus-schittkowski.de/tpnp.htm
http://www.klaus-schittkowski.de/tpnp.htm
http://www.cuter.rl.ac.uk/Problems/mastsif.shtml


Methodological basis – relevant aspects/issues 

 Lagrangian functions / Lagrangian multipliers  become an 
important analytical tool/basis for the optimality conditions 

 A role of penalty function methods diminished (?) 

 Linear/quadratic approximation plays important role in 
converting the original NLP into a sequence of problems 
simpler/easier to solve 

 Unconstrained minimization algorithms still play an important 
role in solving general NLPs 

 Increased application of the concept of „trust region” and the 
trust-region method  

 Use of additional safeguards to stabilize algorithms for 
increased reliability and the rate of convergence (line search, 
trust region, a filter concept, factorization of relevant 
matrices, etc.) 



Lagrangian Function/Lagrangian multipliers 

 Normal Lagrangian function 

Problem:                                                                                          (1) 

 Where  f : Rn→ R1 and g : Rn→ Rm  -  twice continuously differentiable 

                                                                                                        (2) 

If the problem is normal and functions f(x) and g(x) are convex, then the 

necessary and sufficient conditions for optimality is that exist a vector 

of Lagrangian multipliers             such that L(y,x) has at y*,x* its global 

saddle point 

                                                                                                        (3) 

The relation:   

valid for convex problem only 



Lagrangial Function/Lagrangian multipliers (cont.) 

Necessary condition for optimality in differential problem (KKT) 

                                                                                                                                                       (4) 

    

and                                                                                                                                                  (5)  

 

The KKT conditions (4) and (5) are only necessary for optimality. To become sufficient, they must be 
supplemented by a second order condition: 

                                                                           

Where:  

H  is the Hessian matrix of L(y*,x*) : 
           

 

ASA is the Jacobian matrix for strongly active constraints 
 

 

 

H(y*,x*)  should be psd in the subspace of directions tangent to strongly active (SA) constraints 

 

Wierzbicki, A., „A Quadratic Approximation Method Based on Augmented Lagrangian Functions for 
Nonconvex Nonlinear Programming Problems, IIASA, Laxenburg, Austria (1978) 



Lagrangial Function/Lagrangian multipliers (cont.) 

  Equality and inequality constraints 

 

 
   Lagrange function: 

   Karush-Kuhn-Tucker (KKT) optimality conditions: 

  (1) Stationarity conditions…. 

 

  (2) Primal feasibility conditions.……………                , 

  (3) Dual feasibility conditions………………… 

  (4) Complementarity conditions…………… 



Augmented Lagrangian Function 

  Augmented Lagrangian function    

                                                                                                            (1) 

 

 Proposed by Fletcher (1975) for solving constrained problem with  

     equality constraints:                     hi(x) = 0,  i=1,…mE                                    (2)                                       

       The method performs unconstrained optimization to calculate the  

 stationary point λ = λ*,  x = x*   of (normal) Lagrangian function (3) 

                                                                                                                    (3) 

 

 Increasing the value of  r usually forces the stationary point to be a minimum 

 The calculated vector x that minimize the function (1) for several values of 
the parameters  λ and r  is then used to adjust λ  so that they converge to λ*,  

 Hence x(λ,r) converges to the required solution x* of the original constrained 

 problem (with a moderate value of the parameter  r) 



Nonlinear optimization algorithms – overview 

   Two main approaches for solving constrained NLP’s:  

   Sequential quadratic programming (SQP) 

 Example solvers in NAG Library – e04vh, e04uc, e04us;  
 Based on Gill, P.E., et al. (2005) „SNOP:  An Algorithm for Large-scale 

Constrained Optimization, SIAM Review 47(1), 99-131.  

   Interior point method (IPM) 

 Based on Wächter, A., Biegler, L.T., (2006) „On the implementation of a 

primal- dual interior point filter line search algorithm for large-scale 

nonlinear programming”, Mathematical Programming 106(1), 25-57. 

 Example solver in NAG Library – e04st 



Nonlinear optimization algorithms – overview 

Distinct features of SQP and IPM methods: 

 how the inequality constraints are treated 

 how the solver approaches the optimal solution (the progres 

of the optimality measures: optimality, feasibility, 

complementarity) 

 ‘Twofold nature’ of the inequality constraints: 

 If the optimal point satisfy strictly the inequality, it is 
 non-active (could be removed from the model); if it is 
 satisfied as an equality (i.e. active at the solution),the  
 constraint should be present from the very beginning; 



Sequential Quadratic Programming (SQP) - overview 

  Most of the existing SQP solvers based on active set approach 

  At each iteration it solves a quadratic approximation of the  

     original problem 

  Initialization:   

    • choosing a first estimate of the solution x0;  

    • building a quadratic model of the objective around x0 ; 

    • taking a first guess of the set of active constraints; 

  Iteration k:  

    • solving the quadratic program by active set estimation;  

    • updating xk+1 and the set of active constraints;  

    • building a new quadratic model around xk+1 ; 



Sequential Quadratic Programming (SQP) - overview 

  Main characteristics of SQP methods 

   Perform lots of inexpensive iterations 

   Work on the ‘null space’ of the constraints / ‘walk along the   

 boundary’ of the feasible region determined by the 

 constraints. The iterates are thus early on feasible with 

 regard to all linear constraints (and local linearization of 

 nonlinear constraints) 

   The more active constraints there are, the cheaper the 

 iterations are. As a consequence, SQP methods scale very 

 well to large NLP problems with a high number of constraints 

 

 



Interior Point Methods - overview 

  IPM generate iterations that avoid the boundary defined by 
 the inequality constraints 

  Each iteration consists of solving a large linear system of equations 
 (the KKT system) taking into account all variables and 
 constraints, so each iteration is fairly expensive 

 All three optimality measures of KKT are reduced simultaneously 

 As the solver progresses, the iterates are allowed to get closer and 
 closer to the boundary and converge to the optimal solution 

  If one tries to solve the KKT system directly, the complementarity 
 condition may turn out to be unsatisfied and may require relaxation, 

                                            , then the relaxation parameter needs to be 
 adjusted in the subsequent iteration 

  The IPM  perform a relatively small number of expensive iterations; 

 efficient for loosely constrained  problems                                            



Unconstrained optimization – Quasi Newton 

  An important element of constraint optimization algorithms 

 (Quasi-Newton methods: BFGS, DFP, PSB, SR1) 

 

 

 

 

 

 

 

• Nocedal J.,”Theory of Algorithms for Unconstrained Optimization”, Acta Numerica, 1992 

• Ding Y., Lushi E., Li Q., ”Investigation of quasi-Newton methods for unconstrained 
optimization”,  Simon Fraser University, Burnaby, B.C. Canada, 2003.  

Name 
Condition for 

updating formula 
Secant 

condition 
Matrix 

symmetricity 

BFGS Broyden Fletcher, 
Goldfarb, Shanno 

 
H yk = sk H = HT 

DFP Davidon, Fletcher, 

Powell 

 
B sk = yk B = BT 

PSB Powell-Symetric-
Broyden 

 
B sk = yk B – Bk = (B – Bk)

T 

SR1 Symetric-Rank1  
B sk = yk  

B – Hessian matrix,    H – Hessian inverse,         sk = xk+1 – xk,       yk = gk+1 – gk  

 



Unconstrained Minimization - BFGS 

 Proposed independently in 1970 by Broyden, 
Fletcher, Goldfarb and Shanno -  considered 
the most  efficient quasi-Newton method  

„BFGS method has stood the test of time  

well and is still regarded as possibly the  

best secant updating formula”   

  Nick Gould, 2006, Rutherford Appleton Laboratory,  

  Chilton, Oxfordshire, England 

 
                      
                   Updating formulas in the BFGS method: 

 

The Hessian inverse: 

 

The Hessian matrix: 

 

   where 

 
 



Unconstrained minimization for very large problems – 

conjugate gradients 

 Coniugate gradients 

 FR  - Fletcher, Reeves……….  

 CD  - Coniugate Descent……. 

 DY  - Dai-Yuan…………………... 

 PRP – Polak-Ribiere-Poliak…… 

 HS  - Hastenes-Stiefel…………….. 

 Where: 

 Reference:  Yu-hong Dai, Quin Ni, Testing different conjugate gradient 
methods for large scale unconstrained optimization, J. Comp. Math., 2003 

 Comparison based on CUTE problems – PRP & HS seem to be most 
efficient. Some other ‘hybrid’ methods are proposed/investigated. 



Unconstrained minimization by Sequential Quadratic 

Approximation (SQA) - Powell’s algorithm NEWUOA 

Related Reference: 

M.J.D. Powell, „The NEWUOA software   

for unconstrained optimization without  

derivatives” Nonconvex Optimization and  

Its Applications, Springer US,  83  (2006). 

 Earlier work on this subject 

 D. Winfield, „Function Minimization by Interpolation in a Data 
Table”, J. Inst. Maths Applics (1973) 12, 339-347. 

 A.R. Conn, K. Scheinberg, P.L. Toint, „On the Convergence of 
Derivative-free methods for Unconstrained Optimization”.  

     Invited presentation at the Powellfest, Cambridge, July 1996. 



Unconstrained minimization by sequential quadratic 

approximation - Powell’s algorithm NEWUOA 

   Unconstrained minimization problem    min : 

  is replaced by the minimization of 

  Where: 

  The model Q has ½(n+1)(n+2) independent parameters,  

  This number could be prohibitively expensive when n is large 

  So, NEWUOA tries to construct quadratic models from fewer  

     data set { y 1,y 2,…y m } ,   where   (n+2) < m < ½(n+1)(n+2) 

                Q(y i) = F(y i)    i = 1, 2,…,m 

 The remaining parameters of Q are determined by minimizing 

the Frobenius norm of the difference of two consequtive 

Hessian models 



Unconstrained minimization by sequential quadratic 

approximation - Powell’s algorithm NEWUOA (cont.) 

 The model Q uniquely defined (Frobenius norm strictly convex) 

 Lagrange polynomials are used in the interpolation process; 
parameters of the initial model Q calculated easily, owing to 
convenient selection of the interpolation points:  

 y1 = x0,    y i+1 = x0 + ρbeg ei ;    y i+n+1 = x0 - ρbeg ei,   i = 1, 2,…,n;  

 The iteration solves the trust-region quadratic minimization 
subproblem using truncated conjugate gradient method;  

 

 Only one point in the interpolation set is replaced within the 
iteration; it makes possible to control the linear independen-
ce of the interpolation condition  Q(xi) = F(xi), i = 1, 2,…, m;    

 A special strategy for selecting the point  xt  to be replaced 
— maximizing the absolute value of the coresponding Lagran-
gian polynomial (reduce the effect of rounding errors) 



Unconstrained minimization by sequential quadratic 

approximation - Powell’s algorithm NEWUOA (cont.) 

NOYES

NO YES

2

Trust-region Iteration

Calculate d  by minimizing

 subject to the bound

                         then CRVMIN is set 

to the least curvature of Q

  

 

       Using CRVMIN test 

  if  three recent values of 

           are "small"

14

Reduce Δ by a 

factor of 10 or to 

its lower bound ρ

Set RATIO = -1

15

To box 11To box 7To box 5

From boxes 

6, 10 and 12

 

 

1

 3



Unconstrained minimization by sequential quadratic 

approximation - Powell’s algorithm NEWUOA (cont.) 

YES

10

         Updating of the model Q 
If MOVE>0 interpolation point xMOVE is  
 replaced by xopt + d and Q is modified  
 accordingly.  If  F(xopt) < F(xopt),  then  
        xopt  is overwritten by  xopt + d 

5 

YES

11

From box 4

         Updating of the model Q 
If MOVE>0 interpolation point xMOVE is  
 replaced by xopt + d and Q is modified  
 accordingly.  If  F(xopt) < F(xopt),  then  
        xopt  is overwritten by  xopt + d 

5 

NO

         Updating of the model Q 
If MOVE>0 interpolation point xMOVE is  
 replaced by xopt + d and Q is modified  
 accordingly.  If  F(xopt) < F(xopt),  then  
        xopt  is overwritten by  xopt + d 

5 

6

RATIO > 0.1

 

Alternate iteration 
   xMOVE is going to be replaced by  
  xopt + d, where d is chosen in a  

 way that helps the conditioning of  
 the linear system that defines Q. 

Set RATIO = 1 

9 

YES

8

DIST > 2Δ
NO

 

 Let xMOVE be the current 
interpolation point that 
maximizes the distance 

7

To box 5

YESNO

From box15 From box 14

           Termination; 
   the solution: F(xopt + d ) 

13

 

         Reduce ρ  by about a factor

       of 10 subject to 

  and reduce Δ to 

12

To box 2

NO



Other algorithms using sequential quadratic approximation 

Reference:  Powell, M.J.D. (2009). „The BOBYQA algorithm for bound constrained 

optimization without derivatives”, Department of Applied Mathematics and 

Theoretical Physics, Cambridge University. DAMTP 2009/NA06. 

 BOBYQA - An iterative algorithm for finding a minimum of a function   

 F(x), x ϵ Rn subject to bounds a < x < b  on the variables 

 

Reference: Powell, M.J.D. (2014). „On fast trust region methods for quadratic 

models with linear constraints”, Department of Applied Mathematics and 

Theoretical Physics, Cambridge University. DAMTP 2014/NA02.  

 LINCOA - An iterative algorithm for finding a minimum of a function   

 F(x), x ϵ Rn subject to linear constraints   aj
Tx < bj   using  the trust 

region  framework. 

 It is solved by active set method, AS may be updated during an 
iteration,  that decreases of freedom in the variables temporarily 



An active-set strategy in Powell’s algorithm based on 

sequential quadratic approximation 

Reference:  Arouxet, B., Echebest, N., Pilotta, E. (2011), „Active-set 
strategy in Powells method for optimization without derivatives”, 
Comp. Appl. Math. Vol. 30. 

 An algorithm for solving bound constrained minimization 
problem without derivatives based on Powell’s methods 
NEWUOA and BOBYQA. 

 The algorithm uses trust region framework with infinity norm 
instead of Euclidean norm 

 A box constrained problem is solved using active set strategy 
to explore faces of the box. Therefore, it is easily extended to 
bound constrained minimization problem 

 Numerical experiments show that, in general, this alorithm 
requires less function evaluations than Powell’s algorithms 



How to solve efectively and reliably 

the constrained NLP problems? 

 Using available ‘off-the-shelf’ solvers ? 

 There are many solvers of SQP and IPM type;  

 Suitable solver can be selected according to the 
specific characteristics of the problem 

 Is a code based on Powell’s penalty function (such 
as MINCON) still an attractive option ? 

 How to improve the MINCON code/algorithm based 
on the relevant achievements in the field?  Is this 
effort worthwhile ? 



Powell’s penalty function method with ‘shift’ as one of 

the sources of the augmented Lagrangian method 

An Interview with M.J.D. Powell, 

Bulletin of the Int. Cent. for Maths, June 2003 

What the author thinks about His method? 



Powell’s penalty function method ‘with shift’ (1969) - 

 a kind of Lagrangian function 

Penalty function method (Powell, 1969) applied in MINCON  

 

is similar to the Augmented Lagrangian method  (see Wierzbicki,1978) 

Wierzbicki,A., ‘A_quadratic_approximation_method_based on_augmented Lagrangian 

functions for nonconvex nonlineat programming problems’, IIASA, Laxenburg, Austria (1978) 

„the problem of finding an adequate penalty shift (θj
*) is equivalent to 

the fundamental problem of finding Lagrangian multiplier…” ( λj
*
 = σj θj

*
 ) 

„..In practical applications, the algorithm is very robust, it is rather 
difficult to find practical problems for which this algorithm does not 
work, as long as the required accuracy is not too high…” 

(the presence of ‘weakly active constraints’ at the solution x* results in 
discontinuities of Φ(x*, σj

*, θj
* ; it may generate numerical problems). 



How the MINCON code/algorithm could be improved? 

   Unconstrained minimization solver based on Davidon’s  
 method can be replaced by a more robust/efficient solver 

 Consideration can be given to BFGS (considered one of the 
best solvers) 

    • This option still requires numerical approximation of the 
 gradient  with all numerical problems (rounding off/ 
 truncation errors),  

    • Potential numerical problems (illconditioning) in the early 
 stage of the iterative process when the function may be 
 locally non-convex) 

    • Positive feature of using VM method - approximating the 
 gradient may be made less laborious, when the algorithm 
 used for calculating the model has a block structure. 



How the MINCON code/algorithm could be improved? 

   Use of the SQA unconstrained optimization solver 
 NEWBYQA (Powell, 2006) for minimizing the penalty function  

  • Quadratic approximation of the model and the use of trust 
 region framework, with other safeguards incorporated in the
 NEWBYQA algorithm are expected to reduce negative effects 
 of rounding off and truncation errors;  

   •  A good approximation of Hessian matrix (psd) at the 
 solution x* generated by NEWBYQA can be used in the 
 subsequent constrained (large) iterations 

   •  In the final phase the iterations are likely to avoid a non-
 smooth region of the penalty function Φ(x), (the parameters 
 θj = yj*/σj and σj can be kept moderate;  see Wierzbicki, 
 1978);  therefore, potential effects of discontinuities  in the 
 Hessian should not be a problem. 



  

  

 - Θ j
k
   f j (x*) = 0  f j (x)  

 F (x*) 

‘Smooth’ region 

θj = yj*/σj
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