Coupling of neutronic and thermalhydraulic calculations for nuclear reactors

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Michał Górkiewicz

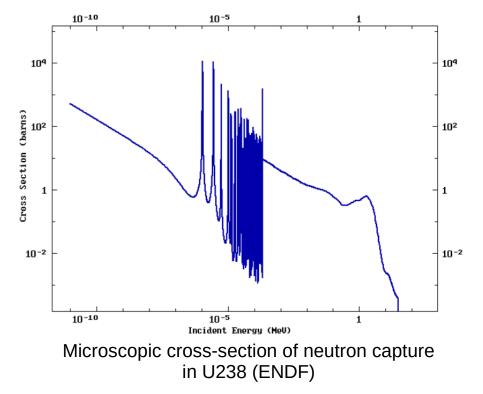
Division of Nuclear Energy and Environmental Studies Michal.Gorkiewicz@ncbj.gov.pl

Rzeczpospolita Polska Unia Europejska Europejski Fundusz Społeczny

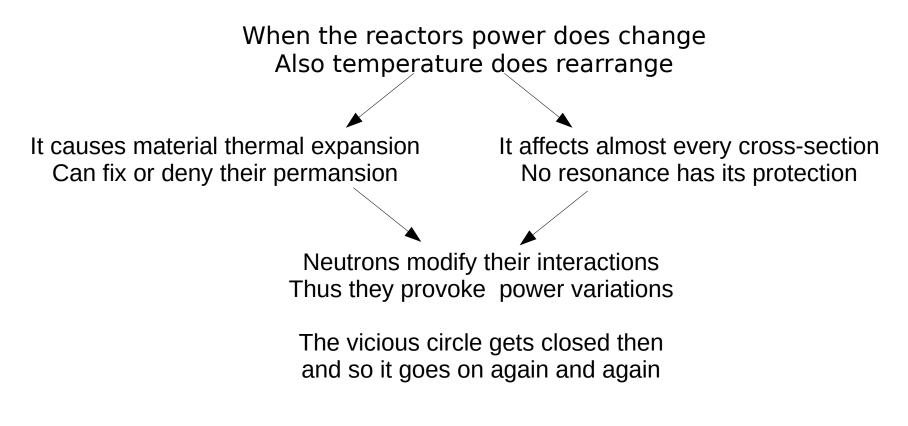
New reactor concepts and safety analyses for the Polish Nuclear Energy Program POWR.03.02.00-00.1005/17

- Introduction
- Neutronic thermal feedbacks
- Serpent & OpenFOAM
- MCB & POKE
- GeN-Foam
- MCB & FLUENT
- Summary

- Dissertation topic
 - Development and validation of coupled neutronic and CFD calculations for HTR applications
 - Basing on MCB code and open source CFD code OpenFOAM the development of coupling scheme for neutronic and thermalhydraulic calculations will be undertaken.
- The aim of the first stage of the research is to familiarize with basics of coupled calculations and aforementioned codes.
- Research based on publications.



Neutronic – thermal feedbacks



- Doppler temperature effect
 - microscopic cross-section resonances broadening by temperature increase
- Thermal expansion
 - changes of materials density
 - affects macroscopic crosssections
 - void coefficient

Neutronic – thermal feedbacks

Serpent & OpenFOAM

Serpent & OpenFOAM

Serpent

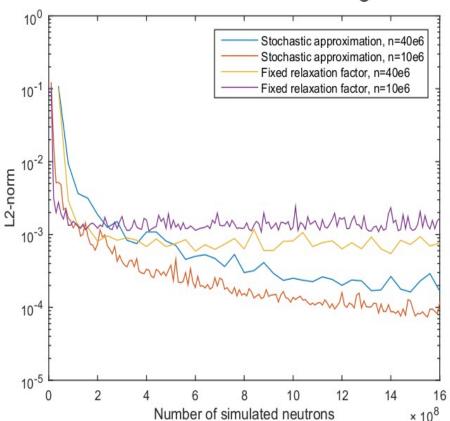
- Monte-Carlo reactor physics code
- Built in multi-physics interface
 - Allows coupling to external codes
 - E.g. CFD, fuel performance etc.
 - On-the-fly Target Motion Sampling treatment of temperature

- OpenFOAM (Field Operation And Manipulation)
 - Open source C++ toolbox for continuum mechanics problems
 - Based on a large library
 - Tensor and field operations,
 - Discretization of partial differential equations,
 - Turbuence models
 - Over 80 ready made solvers

Serpent & OpenFOAM

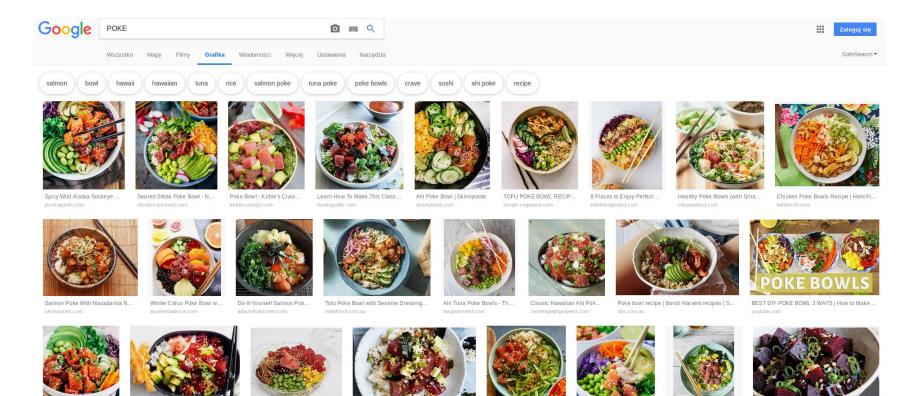
Serpent

- Calculation of the model with uniform temperature and density distributions, fission power distribution is obtained
- Relaxation of the power distribution
- Generation of OpenFOAM field file for the power distribution


• OpenFOAM

- Loading of the power distribution file to the OpenFOAM input
- Calculation of temperature and density distributions with chtMultiRegionSimpleFoam solver
- Determination of convergence by monitoring energy balance
- Generation of new temperature and density field files

- Test case was a mock-up 5x5 fuel assembly based on PWR TMI-1
- Two relaxation schemes were tested: fixed relaxation factor and stochastic approximation with the under-relaxation factor α =0.1.
- With the stochastic approximation the limitation of the Monte-Carlo uncertainties was ommited
- Steady-state calculation
- Single-phase flow


MCB & POKE

MCB & POKE

- MCB (Monte Carlo Continuous Energy Burn-up Code)
 - Internally integrates the MCNP and TTA (Transumation Trajectory Analysis) codes
 - Transmutation probabilities are assessed directly in the process of neutron transport calculation
 - Availability of material processing

- POKE
 - Designed for Ft. St. Vrain reactor
 - Steady-state calculation of fuel and cooland temperature distributions and mass flow

MCB & POKE

Beet and Macadamia Poke | The Splendid Table splendidtable.org

brit.co

5.03.2019

These 11 Fast and Easy P...

M. GOIK

Poke (Hawaiian dish) - Wikipedia

Tuna poke bowl

taste.com.au

M. Górkiewicz, Coupling of neutronic and thermal-hydraulic calculations

Tuna Poke Recipe - Eating...

Vegan Poke Bowl with Wat...

Tuna Poke with Mango an ...

Adam Liaw's tuna, nori and avocado poke bo...

goodfood.com.au

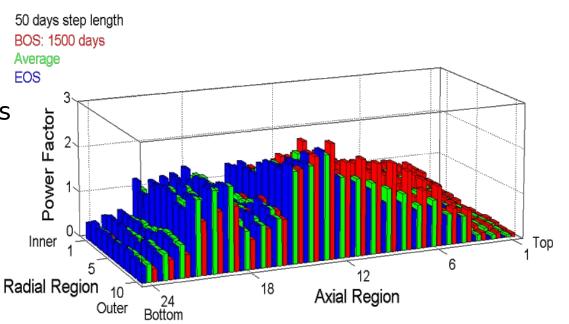
- Coupling made on the level of source. density N_n code - modified POKE incorporated into the MCB
- Data exchange left on external files in order to allow recalculation
- Bridge scheme of burnup step is applied
 - Neutron source normalization
 - Specific values are calculated at the beginning and at the end of step and then averagted
 - The process reduces numerical oscillations

5.03.2019

M. Górkiewicz, Coupling of neutronic and thermal-hydraulic calculations

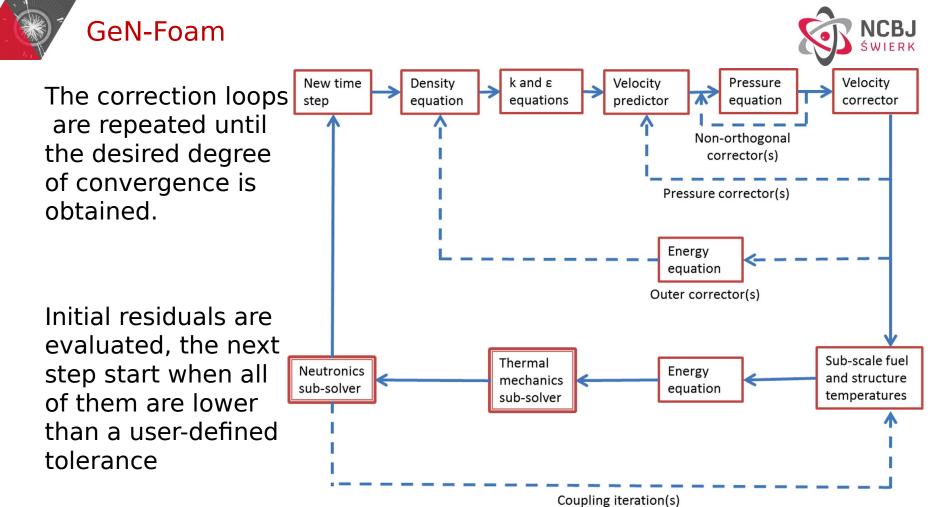
Input:

power P


14/25

- Calculations of prismatic HTGR PuMA operation cycle in a deep burn design
- Several features were included:
 - Burnup
 - Fuel shuffling
 - Control rod operations
 - Burnable poisons
- Applicability only for prismatic HTGRs

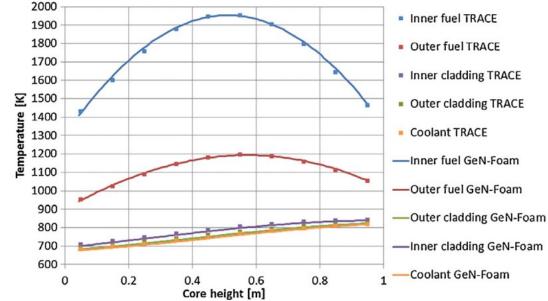
5.03.2019


M. Górkiewicz, Coupling of neutronic and thermal-hydraulic calculations

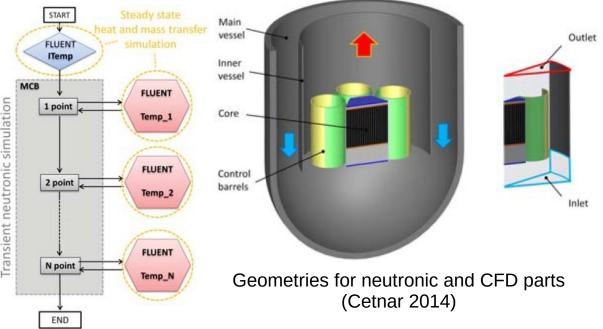
GeN-Foam

- Multi-physics solver based on OpenFOAM libraries
- Consists of several sub-solvers:
 - Thermal-hydraulic sub-solver based on standard k-ε model, porous media approach
 - Thermal-mechanic sub-solver based on ready-made OpenFOAM solver
 - Sub-scale fuel model evaluating local temperature profile in fuel and cladding
 - Neutronic sub-solver based on multi-group neutron diffusion equations
 - Crosss-sections are obtained by interpolation between nominal and perturbated sets
 - The sets has to be prepared earlier by full-core Serpent calculations
 - Deformed mesh is applied according to thermal-mechanic results

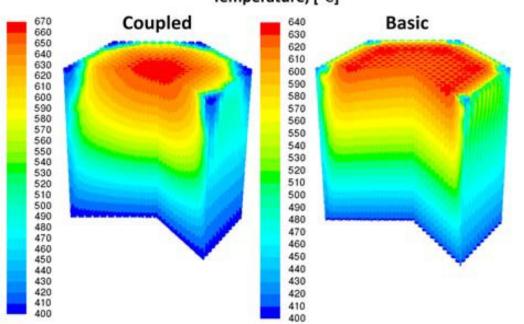
M. Górkiewicz, Coupling of neutronic and thermal-hydraulic calculations


5.03.2019

18/25


- Performance of ESFR (European Sodium Fast Reactor) was simulated
- Results were validated by comparison with TRACE
- Limited applicability for thermal reactors due to possible numerical oscillations
- Thermal expansion
- Single-phase flow

MCB & FLUENT



- ELECTRA (European Lead-cooled Training Reactor) concept was investigated.
 Two different geometries for neutronic
 - neutronic and thermal-hydraulic parts
 - Coupling provided by dedicated script exetucing the codes
 - Volume of the fuel divided into small volumes, thus creating matrix of volumes

Temperature, [°C]

5.03.2019 M. Górkiewicz, Coupling of neutronic and thermal-hydraulic calculations

- Coupling of neutronic and thermal-hydraulic calculations allows to obtain more accurate results compared to separate calculations.
- Coupling is provided by information exchange between specific codes or solvers.
- It can be made internally using specific features of the codes or externally by a script executing codes and fixing data format.
- The MCB code includes several features allowing to accurately simulate entire reactor operating cycle.
- The OpenFOAM code is a very flexible tool that can have many applications and consider complex phenomenons.
- In future external coupling of the MCB and OpenFOAM will be provided.

- 1. Cetnar J., et. al.: Advanced fuel burnup assessments in prismatic HTR for Pu/MA/ Th utilization using MCB system. AGH, Kraków, 2013
- 2. Cetnar J., et. al.: *Neutronic and thermal-hydraulic coupling for 3D reactor core modeling combining MCB and Fluent*. Nukleonika, vol. 60, p. 531-536, 2015
- 3. Lewis E., *Fundamentals of Nuclear Reactor Physics*. Elsevier, Evanson, 2008
- 4. Lamarsh J., *Introduction to Nuclear Reactor Theory*. Addison Wesley Publishing Company, New York, 2002
- Fiorina C. et.al., GeN-Foam: a novel OpenFOAM based multi-physics solver for 2D/3D transient analysis of nuclear reactors, Nuclear Engineering and Design, vol. 294, p. 23-37, 2015
- 6. Tuominen R., et al.: *Coupling Serpent and OpenFOAM for neutronics CFD multiphysics calculations*. VTT Technical Research Centre of Finland Ltd, Espoo, 2016

Thank you for attention

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Michał Górkiewicz

Division of Nuclear Energy and Environmental Studies Michal.Gorkiewicz@ncbj.gov.pl

Rzeczpospolita Polska Unia Europejska Europejski Fundusz Społeczny

New reactor concepts and safety analyses for the Polish Nuclear Energy Program POWR.03.02.00-00.1005/17