Variational Multiscale Method for
solving Navier-Stokes equations



Basic facts

w+u-Vau—rvdAdu+Vp=1£f in 2x(0,T)

Navier-Stokes equations:
V-u=0, in2x(0,T)

u - velocity
u(x,0) = up(x), for x € 12 p - pressure

u=0onoQ

Normalization condition: / p(x,t)dx =0
12

. . e 1
Basic physical quantatities: kinetic energy k(t) = E| u(t ||2‘

energy dissipation rate £(t) = IVu(t)|?,

I‘?I
power input P(t) = (f(f), u(t)),

V= % kinematic viscosity

U = characteristic velocity, L = characteristic length,

v = kinematic viscosity.



Basic facts

Non-dimensional form of incompressible Navier-Stokes equations:

1
u+u-Vu— —Au+Vp=f in 2 x(0,T).

Re
V-u=0 in2x(0,T).

From Kolmogorov theory it is known that small scales exist to O(Re3/4).
This means that the mesh size should be of this order i.e. h~Re™3/4
Hence the number of mesh points needed to solve directly

(DNS - Direct Navier-Stokes) is of the order N~Re/4 in 3D.

Below some examples of Reynolds numbers:

model airplane (characteristic length 1 m, characteristic velocity 1 m/s)
Re = 7- 104

requiring N = 8 - 10'” mesh points per time-step for a DNS
cars (characteristic velocity 3 m/s)

Re = 6 -10°

requiring N = 10'? mesh points per time-step for a DNS
airplanes (characteristic velocity 30 m/s)

Re =~ 2-107

requiring N = 2 - 10'® mesh points per time-step for a DNS
atmospheric flows

Re ~ 102"

requiring N = 10*® mesh points per time-step for a DNS



Basic mathematical facts

Definition (Leray—Hopf weak solutions). We say that a measurable
function u : 2 x [0,T] — R? is a weak solution to the NSE

L.ueL>(0,T;L7) N L*0,T; Hy,);
2. for each ¢ € C5°(£2x[0,T)),
with V - ¢ = 0, the following identity holds:

/ / [u b, — L?u‘?{,ﬁa —u-Vu u] dx dt
0o Jo Re

_/ [fqbdxdt—/ ug ¢(0) dx;
JO S0 12

3. the “energy inequality” is satisfied for t € [0,T]:

t t
l||u{t}||'E + 1 / |Vu(r)||?dr < %HU(]HE + / / f(x,7)u(x, 7)dxdr.
2 Re [, 2 Jo J0

H1 is the Sobolev space of square integrable functions with weak derivatives of order 1
/p

T
I F ()5 dr ifl <p<+ox
Hj,:={ue[H;(2)": V-u=0} [l eorx) = [L A
eﬁbuup | £ ()| x it p= +o0c

0
lullgg = Nullz + [Vullz2~Vul| o



Basic mathematical facts

Theorem (Leray Hopf)
Consider wg and f with
u € L2 and fe L?*0,T;L2).

Then, there erists at least one weak solution to the NSE on [0,T]. Weak so-
lutions satisfy the energy inequality that, in a bounded domain, can be
rewritten in a dimensional form as

k(t) + |2 [ (t') dt gk(uuf P(t)dt, Yte[0,T].

It is known that weak

L*3(0,T;(H} ,)) if 2 C R®
=
solutions satisfy: i

L*(0,T;(H;,)") if 2 c R

Definition We say that a weak solution u is a strong solution if

ue L=(0,T; HL ) N L2(0,T: HL, n [HX(2)]%),
u € L?(0,T;L2),

where H?(§2) < L?({2) is the space of (classes of equivalence of ) functions in
L2(02) with derivatives up to the second order in L2((2).



Basic mathematical facts

1. Strong solutions are unique also in a wider class of weak solutions,

but it is not known whether they exist.

Theorem Let uy € H}, and f € L?(0,T; L2). Then there erists 0 <
To < T such that there erists a unique strong solution in [0,Ty). The time Ty

depends on f, | Vug||, and Re;

2. Strong solutions satisfy energy equality

3. Strong solution become smooth (for each positive time) if 0Q, u_ and f

are smooth.

Theorem Let u be a strong solution in [0, T]. If £2 is of class C* and

if f € C>((0,T] x §2) then
ueC>®([g,T)x 2), Ve>N0.
In fact to have smooth solutions it is sufficient to know that:
ues L7(0,T;L((2)) for ?:} + g = 1.
So, for d=2 r=2, s=2 — which is true for weak solutions.

Technically most of the proofs 2
. . . Ulrs = . . N
use the Ladyzhenskaya inequality: A4 V4| V|4

if 2 c R2,

if 2 c R3.



Basic mathematical facts

Question: to what extend irregularity of the solutions exist?

Definition We say that a solution u becomes irregular at the time T
if and only if
(a) T* < oc;
(b)u e C>((s,T*) x 12), for some s < T*;
(c) it is not possible to extend u to a regular solution in any interval (s, T7"),

with T7% > T7,

The number T* is called the epoch of irregularity (“époque de irrégularité” in
Leray ).
Theorem ( Leray., Scheffer). Let u be a weak solution and

let T* be an epoch of irreqularity. Then the following properties hold:
1. ||Vu(t)|| = o0 ast — T in such a way that,

| C
jp— NEK : { : : - *
20 =C(02) >0 IVu)l < gy Y<T

2. the 1/2-dimensional Hausdorff dimension of the set of (possible) epochs
of irreqularity is equal to zero.

This means that the set of irregular solutions of NS equations in 3D is fractal !



Some notations
Time averages:
(u)(x ]1111 T/ u(x,t)d (p)(x) == ]1111 T/ (x,t)dt.

Space averages:

1:1+w m+1-_r 535"‘?

1
The simplest form: Tu(x.,1) =53 / / f w(y1, Y2, Ya, t) dyrdyadys

rl— -.-;11‘_2 11'.'1':].

has many disadvantages, hence approach based on convolution is used:

L1 X
0<g(x) <1, g(0) =1, [ g(x)dx = 1. gs(x) := é_dg (E)
JIR®

u(x,t) = (gs *u)(x,t) = / gs(x —x"Ju(x',t)dx’, and u’' =u-T
JIRd

Example:
Gaussian filter Ok



Conventional turbulence models

Time average Navier Stokes equations:

1
—R—&{u} +V-(uu)+Vp)=(f), and V-(u)=0, in (2

Since u = <u> + U’ this leads to:

1 ] i (1 r iy ) Il L1 .
— o lu) + V-(u)(u)y + V- (uua')+V(p) =(f), and V- (u) =0, in {2.

Due to the fact that (uu) # (u){u) some model is needed for V<u'u’>

Example:

V-{u'u)=-V-(vrV*(u))+ terms incorporated into the pressure.

1 Y 1
vr = Constant | (VE'), (V*v);; := E[-yi-_xj + Vj,z,)
[ =I(x,t) : local length scale of turbulent fluctuations,
k' = §|u’[x. t)|* : kinetic energy of turbulent fluctuations.

This is linked to RANS — Reynolds Average Navier-Stokes



LES: Large Eddy Simulations

u(x,t) = j;{ 1 u(x — x'.t) gs(x') dx’ p(x,t) = /J p(x —x' 1) gs(x") dx’

1d
1 _ _
W 4 V- (uu ) — AT+ Vp+V-(u ul —aal) =F+ As(u,p)

V.-u =0.
u-n=0 and pgu-7;—-n-o(u,p) - -7;=0 on df2,

where boundary Fommutator Ay, p) :/ gs(x —s) a(u, p)(s) - n(s) dS(s)
error (BCE) term is: 812

Subfilter-scale stress tensor 7 =Tu —uu =~ §(, )

9
Total stress: o(1,7) :=pl — — VU + S(1, ).
E

m—é\? (V) + V- (uul) + Vp=f
+ [ g(x —s) [ivsu(s} .n(s) — p(s)n(s)| dS(s) in (0,T) x R
Jan Re
BCE can be estimated as follows:

[{ d

k
dx i Cljl+'i!‘{ Id—qll(.‘i: —d

/ﬂgﬁ(x — s)u(s) dS(s)

}| v |Epiam



LES: Large Eddy Simulations

Finally it leads to the following formulation:

(=

wi+V.(wwl)-V. (%‘st — S(unw]) +Vg="Ffin 2 x (0,T]

V.-w=0 in 2 x(0,T]
w(x,0) =1p(x) in £2

w-n=0 and SW-7; —n-o(w.,p) - 7; =00ndR x (0,T]
o(w,q) :=ql — %Tsw +S(w, w)
Variational formulation of LES:

(Wi, V) + (W -Vw,v) + (%sz — S(w, w],?v) +I—(q,V-v)=(f.v)
e

2
I = —[ mn - (—‘st — 8w, wj) -vdS
50 Re (

Decompositionof vi v=(v-n)n+(v-7;)7;=(v-7;)7; as(v,n)=0.

leads to: r =/ B(w)w-T;v-T;dS.
12



LES: variational formulation

X = {v c[HY(2): v-n=0on é'i'ﬂ*}

Q= {q c L*(): fr}qd:{ — D}.

Find velocity w:[0,T]—X, and pressure g such that for any v:

( )

(We, v) + (w-Vw,v) + (R;"C’Sw — S(w,w), "C-'"“\-')

+ Bw)w-T;jv-1;dS — (¢, V-v)=(f,v), YveX,

a0
Q.

\ (V-w,A)=0, YA

im

This is so called mixed variational formulation: spaces here are not
divergence-free and the constraint is imposed in an approximate way.
If S(w,w)=0 additional analysis is required to take into account
boundary estimation error. For the boundary condition u=0 the

space (Hj)?is used.



LES: numerical variational formulation

Let X,cX and Q,cQ are finite dimensional subspaces (for example based
on finite elemet method). Then the problem is to find:

wh :[0,T] — Xy, q" : (0,T] — Qp such that,

"

Wy 2 __ .
(Wi vh) 47 (wh wh vy + (R—V--w’* — S(wh, wh), "C’Svh>
- )

+ Blwh)ywh - T vi . T;dS — (¢".V-vh) = (T,vh), vvhe X,
802

(V-wi A" =0, YA eQ,.

1, 1
where b*(u,v,w) := E“l -Vv,w) — 5{11 -Vw,v)

Fast reminder basic fact from numerical analysis (Lax theorem):
Approximation + Stability => Convergence

Stability can be achieved by adding extra stabilization term or
by satisfying special conditions



Fundamentals in numerical analysis

Differential equation: Approximation:

L:U—->F, 'U->G LU, —>F, |L:U, -G
Lu=f, uelU, feF Lu="f,u el 6 f ek
lu=g, ueU, geG lLu =9, u,eU,, g,eG,

L — differential operator, | — operator describing boundary/initial conditions
L, I, — discrete approximation of L and /

{Uh, rhU : p;’ }hew This triple is called approximation of the space U, where:

rhU U —->U, r, are restriction operators e.g.

1
" :F>F (ru)(x)=u(x) or (ru)(x)= BT J‘B(Xi’r)u(x)dx
’:G—G,

pLJ U, ->U p,, is prolongation operator e.g. interpolation function



Fundamentals in numerical analysis

L, rhuu( p) - fh (p) = O(hq) Local consistency (approximation)
1 u(p) - 9, (p) = O(h?)
[ LhrhUu - 1, ”Ehzo(hq)
I1,r’u=g, lI;"=0O(h?)

Global consistency

U U U,uU .
Approximation of space U is convergent if: T, — | T, = Py Iy U ->U
U
The norms are consistent if: vueU || r-u ||h—)|| u ||
U U
The numerical scheme is convergent if: ” I, u _uh”h "—0

The numerical scheme is stable, if for any h<h, there
exists unique solution of approximate equation and:

lug "< MLy Dy + 1 gy lI5™)



Fundamentals in numerical analysis

Lax Theorem
If the numerical scheme is consistent with the order g (in norm sense) and stable

then the scheme is convergent and:

U . U, — q
v u=u,flz»=O(h™) It = max u, (p).
Cea Lemma
- Uy lln= \/hxhy > lu,(p) P
or finite . pethy
u-u.ll<C inf ||lu-v
element method: ” h” vpeU,, ” h” u, :{u(p) ' pe Qh}

General form of numerical scheme:

Z A(p,q)u,(q)=u,(p), peQ,uTl; N, — grid neighbourhood
qeNy (p)
Example 1. If for some a independent of h the following condition holds:

A(p. p)— D IA(p.a)a, N (p)=N,(p)—{p}

qeN'y(p)
then the scheme is stable in the norm ,, max”.

At
Example 2. For advection problems CFL (Courant-Friedrichs-Levy) Vv >
condition for explicit methods: (AX)




Some standard finite elements examples in 2D

MFE = M(T) = {v e Ly(Q): v|y € Py forevery T T},

k. k 0 — Ak |
"M[} =M'NnC {Q} =M'NH {Q] Function value prescribed

ko k I @  Function value and st derivative prescribed
J t— I"_'l H ﬁ . i i . i p I
M{]-[]’ M 0 { } @  Function value and 1st and 2nd derivatives prescribed
|l Normal derivative prescribed

. . @) .
Linear triangular element M Bell triangle
u e CYQ) ueCY)
N\ Mo = P1, dimMes =3 . Mer C Ps, duutlyr; € Ps,  dim Tl = 18
| I:[.:,J padt
N\ Quadratic triangular element M Hsieh—Clough-Tocher element
' ueCQ) \\ ue C’[I.Q}
Mo =P, dimI =6 -2 T=\J_ Ki. ulg, €Ps. dimIer =12
Cubic triangular element _Ma Bilinear quadrilateral element Q;
ueCQ) ueC Q)
l'[,.m- = ‘P_l,.. dim ]'lmf = 10 l’[m- _ ‘pj-. Hl;]';;; = p[. dim l'[m- =4
Argyris triangle ’ Serendipity element
u < Cl[ﬂ} 1 . e C'D[Q}
Mer =Ps,  dim Mg = 21 Mer C Pa, ular; € Pr,  dim MMeer = 8




Some 3D elements

MINI element
(with bubble function)

Crouseix-Raviart element
with bubble function
(non-conforming)

Q,-P, element




LES: stability problem

If LBB condition (Ladyzhenskaya,Babuska,Brezzi):

h h
. ¢ V-V e
qnlf(fgf sup |(|qh|| ovi] = C>0 issatisfied
s W AR

then the following inequality holds:
1
SIwh (@)1

i
+f i|vswh||2_(c;'(wh._wh;ﬂsa--hJJrf B(wh) |wh -2 dS| dt’
o |Re an

1
< =
— 2

t
|To||* + C Re f IF]|%, dt’.
0
If, additionally, 3(-) = (o > 0 and the model in dissipative in the sense that
(S(v,v),Viv) <0 Yv e X,

then the method is stable.
Condition B(w) = 3(w,4d, Re) > o = u(0, Re) > 0. should be true for reasonable

boundary condition, while dissipativity [ S(v,v): Vevdx <0 Y¥veX
2

holds for example for eddy viscosity models, S$*(v,v)= —vp(8,v) Vv, vr >0
but is not universal.



Variational Multi-scale Model

b(u,v,w) := % / [u-Vv-w—u-Vw-v]dx
Q

Basic properties of the form b:
b(u,v,w) = —b(u,w,v) and b(u,v,v)=0, Yuv,weX,

Problem:
Findu:[0, T] > Xandp: (0, T] - Q satisfying:

(q,V-u)=0 Yged,

(g, v) +a(u,v) +blu,u,v) —(p,V-v) =(f,v) Vv e X,
u(x,0) = uy(x) vx e (2



Variational Multi-scale Model

Space decomposition: X =X ¢ X', where X := X" is the chosen finite element space.

u=u+u, a=u":=Puec X", u =(I-PlueX/,
where P: X — X = X" isthe projection operator.
Insert u = u" + u’ and alternately:
v = v then v = v’ which gives two coupled equations:

(T + lléj’h] +a(u+ u’', 1.-'&) +h(u+u . a+u,vh) — [ph + ¢,V -vh)
= (f, 1—-‘“) vvh e XE,

(M +u),v) +a(@+u' V) +bm+u a+u,v) - (p" +p,V-v)
— [t. ‘_.-'r‘.] "-?-'.'F..I E XII

This system of equations is completely equivalent to the original one !

Some algebraic manipulations lead to the following formulation:



Variational Multi-scale Model

(ﬁikvh) + a(ﬁ.vh] + b(w, 1, Vh] - [ph._'? - 1—-'hj — Iffh._vh} = (1, Vh}

where:

(r',vh) = (£, vh) — b(u', ', vh)
— [(u),v") + a(u’,v?) + b(@, u, v + b, TV = (P, V- vP)]

and
(), v") +a(u’,v') + b0, 0, v') — (p, V- V) = (f',v') = (r", V'),

where:

(rh v [\a}—b{uuxj
— [(1, +a(mu’) +b(u', @ v") +b(a,u’,v') — (B, V - v')]

In VMM these two equations are discretized simultaneously:

for X" chosen complementary finite dimensional X, is taken for
fluctuation approximation.

Because of stability problem additional term is added of the form:
(v(u) MU, TA).



Variational Multi-scale Model

u:[0,T] — X" 5:(0,T] — Q",

Find: - 0.1 = X4 o (0.7]— @)

such that:

(W, V) + a(w,v?) + b(m,m,v") — (p". V- v") + (¢". V - 1) — (£, vh)

where: =(rj,v") Vvt eX, " € Q" (11.17)

r

(rp, V") = (£, vP) = b(u', ', vh) — [(uh,, v") + a(uy, v7) + b(d, up, v*)

+ b, W v") = (ph, V- V")
and

(g 4. vy) + a(ug, vi) + (vr(T 4 uy) Viug, Vivy) + b(ug, u,vy)

—(pp. V-V + (qp. V-up) = (r".v'), VYvieX}, Vg, € Q.

(r",v) == (F,v}) — b(mw, @@, v})
— [(W, vy) + a(@, vy) + b(u}, T, vy) + b(T,up, vi) — (p", V- v})]
vr = (C0)* V5T +up)|. vy = (C0)* |Viu,
with uh{Oj — 1y = Pug in 2, uy(0) =u), = (I — P)ug in 12,
VMM typically uses a computational model for the fluctuations that uncouples

second equation into one small system per mesh cell — for example using
bubble functions: ¢, >0 on Kh and ¢, =0 on dKh (Kh —finite elements), then

X} := span {¢gn : all mesh cells fi’h}g



Variational Multi-scale Model

The following theorem shows stability of VMM:

Let vp > 0 X = Xhg X} and let @ =1+ uy. Then U satisfies:

t
.l|ﬁ{t]|||2—|—/ (i IVeu(t)||* + / rfr(u}vsu’{t’jﬁdx) dt’
2 Jo RE’ Ji7

t
= 1 lugl|® + [ (F(t"), a(t’)) de’.

2 Jo

Multiscale approach: let "(Q) denotes coarse finite element mesh and
n"(Q) finer mesh (h<H) that can be obtained by refining. Then:

QT c Q" c Q :=LYN), and X ¢ X" ¢ X := [HL(2)]°.

(g, V - vH)
inf su : >3=>0  foru=~hH
eon onenu g VVH] = R RER

Assume LBB condition is satisfied:

The key is to construct multiscale decomposition of deformation tensor Vsuh
since u"eX naturally we have:

Vu" €L :={{=10;; : £;; = {;; and £;; € L*(2), i,j =1,2,3.}



Variational Multi-scale Model

Then discontinouous finite element space can be taken for tH(Q).
LT cLlcL
Example: for u=h or H
XH = {C” piecewise linear (vectors) on 7 ( Q]}._
L# = {Lz discontinuous, piecewise constant (symmetric tensors) on 7 ( J?j}

Note that L*=Vs XK,

The idea of the method is to add global eddy viscosity to the FEM
and to subtract its effects on the large scales as follows:

Find u" : [0,T] — X", p" : (0,T] — Q", and g : (0,T] — L¥ satisfying
{ui"._ v + a(u”, 1-'hj + b(u”, u”, 1-'h] — [-ph._\? a4+ (¢", V- uh)
+ (vrVeul, VEvh) — [rfrgH._sth} = (f.v"), ¥vh e X" v¢" € Q.
(gf —vsul Hy=0, v cLH
g = Py (V® uhj._ where Py : L — L is the L? orthogonal projector.

Last term on rhs in 1st equation can be written as: (vr[(V<u") — Py (V:u")],Vvh)



Variational Multi-scale Model

With Py : L — LH the L?(£2) orthogonal projector, define

(Vsuh) := Py (Vu®),  (Veu") = (I — Py)(Veuh).

Then this term can be simply written as:  (vr(V*u")’, (V*u")").
Theorem The method is equivalent to: find u® : [0,T] — X",
and p" : (0,T] — Q" satisfying
[ufﬂ'h) + {l[uhj’h) +b(ul, ul vy — {phﬁ?’ v+ {qh._ V- uh’j
[ur{"?’suhj’, ["C”vhj’j = (f,v"), vvle X" ¢" e Q"

The following theorem assures stability of this method:

Theorem The solution u* of satisfies ¥t € (0,T):
l||11h"|{- t)]|? + t 2 Va2 + [ vr|(Viu) [2dx | dt’
2 " o | Re 0

¢
_1 lu(-,0)|? —f (£, vP)(t') at'.
2 0

Multiscale decomposition of the deformation induces
a multiscale decomposition of the velocities



Variational Multi-scale Model
Vi={veX:(g,V-v)=0 ¥YqecQ},
VHE = {V'”' e XF:(g",V-vH)=0 Vg"e Q”’}.

Definition (Elliptic projection). For p = h,H, P; : X — V* is the
projection operator satisfying

(V[ — Pp(w)],V*v¥) =0, ¥v# € Vh.
Theorem. Multiscale deformation decomposition is VMM with:
u =u4(uh), W= Ppu® € X, {uh}’ = (I - nguh.
(vrV*(u"), V*(v")) = (up Viu", Vivh) — (vr Py (V*u®), Py (VV1).
3

XH = {CD piecewise linear on ?T“(ﬂ}}- X =X = span {-r::l_.x-{xj . all vertices N < frH{!?j} .

X}, := span {¢n(x) : all vertices N € 7"(2), N ¢ =" (12)}.

@,(x) is the usual piecewise linear finite element
basis function associated with vertices of m"(Q)

Ligth nodes correspond to velocity fluctuations




Conclusions

VMM is LES model and can be implemented as finite
element method

Stability can be assured by typical conditions (LBB)

Due to the fact that the VMM is derived from equivalent
formulation of NS equations an approximate solution can
be treated as approximation of the DNS problem

(u =u + W

Because coarse mesh is used computation time can be
decreased

Usage of bubble functions results in easier to solve
discrete equations
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