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Basic facts 

u = 0 on ∂Ω 

Normalization condition: 

Navier-Stokes equations: 
u  - velocity 
p - pressure 

Basic physical quantatities:  

𝜈 =
𝜇

𝜌
  kinematic viscosity 



From Kolmogorov theory it is known that small scales exist to O(Re-3/4). 
This means that the mesh size should be of this order i.e. h~Re-3/4  

Hence the number of mesh points needed to solve directly 
(DNS - Direct Navier-Stokes) is of the order N~Re-9/4 in 3D.  
Below some examples of Reynolds numbers: 

Non-dimensional form of incompressible Navier-Stokes equations: 

Basic facts 



Basic mathematical facts 

H1 is the Sobolev space of square integrable functions with weak derivatives of order 1  

| 𝑢 |𝐻0
1 = | 𝑢 |𝐿2 + ||𝛻𝑢||𝐿2~||𝛻𝑢||𝐿2 



Basic mathematical facts 

It is known that weak  
solutions satisfy: 



Basic mathematical facts 

1. Strong solutions are unique also in a wider class of weak solutions, 
but it is not known whether they exist. 

2. Strong solutions satisfy energy equality 
3. Strong solution become smooth (for each positive time) if ∂Ω, uo and f 
are smooth. 

In fact to have smooth solutions it is sufficient to know that: 

So, for d=2 r=2, s=2 – which is true for weak solutions. 

Technically most of the proofs  
use the Ladyzhenskaya inequality:  



Basic mathematical facts 

Question: to what extend irregularity of the solutions exist? 

This means that the set of irregular solutions of NS equations in 3D is fractal ! 



Example:  
Gaussian filter 

Some notations 
Time averages: 

Space averages: 

The simplest form: 

has many disadvantages, hence approach based on convolution is used:  



Due to the fact that 

Conventional turbulence models 

some model is needed for <u’u’> 

Example: 

This is linked to RANS – Reynolds Average Navier-Stokes  

Time average Navier Stokes equations: 

Since u = <u> + u’ this leads to: 



LES: Large Eddy Simulations 

where boundary commutator  
error (BCE) term is: 

Subfilter-scale stress tensor 

Total stress: 

BCE can be estimated as follows: 



Finally it leads to the following formulation: 

LES: Large Eddy Simulations 

Variational formulation of LES: 

Decomposition of v: as (v,n)=0. 

leads to: 



LES: variational formulation 

Find velocity w:[0,T]X, and pressure q such that for any v:  

This is so called mixed variational formulation: spaces here are not  
divergence-free  and the constraint is imposed in an approximate way. 
If S(w,w)=0 additional analysis is required to take into account  
boundary estimation error. For the boundary condition u=0 the  
space (𝐻0

1)d is used. 



LES: numerical variational formulation 
Let XhX and QhQ are finite dimensional subspaces (for example based  
on finite elemet method). Then the problem is to find: 

such that, 

where  

Fast reminder basic fact from numerical analysis (Lax theorem): 
Approximation + Stability => Convergence  
 
Stability can be achieved by adding extra stabilization term or 
by satisfying special conditions 



Differential equation: 

L – differential operator, l – operator describing boundary/initial conditions 
Lh, lh – discrete approximation of L and l 

Approximation: 

Fundamentals in numerical analysis 

This triple is called approximation of the space U, where: 

rh are restriction operators e.g. 

ph is prolongation operator e.g. interpolation function  
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Approximation of space U is convergent if: 

The norms are consistent if: 

The numerical scheme is convergent if: 

The numerical scheme is stable, if for any h<h0 there 
exists unique solution of approximate equation and: 

Local consistency (approximation) 

Global consistency  

Fundamentals in numerical analysis 
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Lax Theorem 
If the numerical scheme is consistent with the order q (in norm sense) and stable  
then the scheme is convergent and: 

General form of numerical scheme: 

Example 1. If for some α independent of h the following condition holds: 

then the scheme is stable in the norm „max”. 

Nh – grid neighbourhood  

Fundamentals in numerical analysis 

Example 2. For advection problems CFL (Courant-Friedrichs-Levy)  
    condition for explicit methods:  
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For finite  
element method:  
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Some standard finite elements examples in 2D 



Some 3D elements 

MINI element 
(with bubble function) 

Crouseix-Raviart element 
with bubble function 
(non-conforming) 

Q2-P1 element 



LES: stability problem 

If LBB condition (Ladyzhenskaya,Babuška,Brezzi): 

then the following inequality holds: 

is satisfied 

Condition should be true for reasonable 

boundary condition, while dissipativity 

holds for example for eddy viscosity models, 
but is not universal. 



Variational Multi-scale Model 

Basic properties of the form b: 

Problem: 
Find u : [0, T ] → X and p : (0, T ] → Q satisfying: 



Variational Multi-scale Model 
Space decomposition: 

where  is the projection operator. 

Insert u = uh + u’ and alternately:  
v = vh then v = v’ which gives two coupled equations: 

This system of equations is completely equivalent  to the original one ! 
 
Some algebraic manipulations lead to the following formulation: 



Variational Multi-scale Model 

where: 

where: 

and 

In VMM these two equations are discretized simultaneously: 
for Xh  chosen complementary finite dimensional X’

b is taken for 
fluctuation approximation. 
Because of stability problem additional term is added of the form: 
(νT(u)∇u,∇v).  



Variational Multi-scale Model 

Find:  such that: 

where: 

and 

where: 

VMM typically uses a computational model for the fluctuations that uncouples  
second equation into one small system per mesh cell – for example using 
bubble functions: Kh > 0 on Kh and Kh =0 on ∂Kh (Kh – finite elements), then 

with 



Variational Multi-scale Model 

Multiscale approach: let πH(Ω) denotes coarse finite element mesh and 
πh(Ω) finer mesh (h<H) that can be obtained by refining. Then: 

Assume LBB condition is satisfied: 

The key is to construct multiscale decomposition of deformation tensor suh 

since uhX naturally we have: 

The following theorem shows stability of VMM: 



Variational Multi-scale Model 

Then discontinouous finite element space can be taken for πH(Ω).  

Example: for =h or H 

Note that L=s X. 
 
The idea of the method is to add global eddy viscosity to the FEM  
and to subtract its effects on the large scales as follows: 

Last term on rhs in 1st equation can be written as: 



Variational Multi-scale Model 

Then this term can be simply written as: 

The following theorem assures stability of this method:  

Multiscale decomposition of the deformation induces 
a multiscale decomposition of the velocities 



Variational Multi-scale Model 

Theorem. Multiscale deformation decomposition is VMM with: 

φN(x) is the usual piecewise linear finite element  
basis function associated with vertices of πH(Ω)  

Ligth nodes correspond to velocity fluctuations 



Conclusions 

• VMM is LES model and can be implemented as finite 
element method 

• Stability can be assured by typical conditions (LBB) 

• Due to the fact that the VMM is derived from equivalent 
formulation of NS equations an approximate solution can 
be treated as approximation of the DNS problem 
(𝑢ℎ = 𝑢 + (𝑢ℎ)′) 

• Because coarse mesh is used computation time can be 
decreased  

• Usage of bubble functions results in easier to solve 
discrete equations 

 




