

Research in Nuclear Energy Group Cambridge University Department of Engineering

Mikolaj Adam Kowalski

DATE: 19.12.2017

Engineering - Energy, Fluid dynamics and Turbo-machinery

Nuclear Energy Group

Main research topics:

- Advanced Reactor Design
- Core Layout Optimisation
- Reactor Physics Modelling Methods
- Small Modular Reactors

Academic staff:

- Dr Geoff Parks
- Dr Eugene Shwageraus
- Tony Raulstone
- Dr Miles Stopher

16 Doctoral Students

1 year MPhil in Nuclear Energy Course:

14 -20 students each year

Miles Stopher - Probabilistic risk assessment

Provide an independent analysis of SMR core damage frequency claims of the NuScale SMR system using open-sourced data and modern probabilistic methods.

Fault tree

Safety stop for hoist

Main hoist motor

OL-PROT

Detection of overload

even

DET-OI

e.g. NuScale Module drops during refueling process.

Overload event occurs

E-OI

Full RX

Alisha Kasam- Bread & Burn MSR

- Dual-salt: Separate fuel & coolant salts (based on Moltex)
 - Corrosion & irradiation damage limited to cladding (replaceable)
 - Fuel thermal expansion → passively safe fast reactor

- I. Scott, et al., "Stable Salt Reactor Design Concept," in Proceedings of the Thorium Energy Conference, (Mumbai, India), 2015.
- Breed & burn: LEU feed fuel → breeds
 Pu in fast spectrum → high burnup →
 direct disposal

Alisha Kasam- Bread & Burn MSR

Dual-salt

- Premise: natural convection of fuel salt in tube → enhances heat transfer → allows larger fuel diameter
- Thermal-hydraulic feasibility: how much natural convection, heat transfer from fuel to coolant?

Breed & burn

- **Premise:** Fresh (k<<1) fertile fuel breeds enough Pu to become driver (k>>1) fuel
- Neutronic feasibility: can fuel tube configuration sustain B&B mode?
 - Requires large fuel diameter, tight lattice, hard spectrum

Andhika Feri Wibisono – Hybrid Small Modular BWR with External Superheater

77

Andhika Feri Wibisono – Hybrid Small Modular BWR with External Superheater

Parameter	AP1000		ESBWR	
	No	With	No	With
	Superheater	Superheater	Superheater	Superheater
HP turbine inlet temp. (°C)	271	600	284	600
Nuclear Power generated (MWe)	1,031.3	2,045.0	1,593.3	2,838.0
Fossil Heat Required (MWt)	-	2,318.0	-	2,906.0
Reactor Thermal Power/Nuclear	3,416.6	3,416.6	4,503.9	4,503.9
Heat (MWt)				
Increment of Power (%)	-	98.00	-	78.12
Fossil Fuel Cycle Efficiency (%)	-	43.66	-	42.83
Total Cycle Efficiency (%)	30.23	35.66	35.38	38.30

Benefits of coupling NPP with external superheater:

- Improvement in cycle thermal efficiency;
- Load can be reduced down to 65-70% by adjusting the superheater heat, while maintaining the reactor to operate at 100% of its full-rated power.

Possible extra effects:

- Vessel size reduction
- Further increase of cycle thermal efficiency by increasing system pressure

Zhiyao Xing– Alternative FHR Design Leveraging AGR Technology

- What is an FHR?
 - Solid high-temperature fuel
 - Molten salt coolant (700 °C)
 - High temperature moderator (graphite)
- Advantages?
 - Salt with high boiling point → reduced concerns about coolant boiling
 - Operation at atmospheric pressure
 - High solubility of most fission products in liquid Fluoride salts

Zhiyao Xing– Alternative FHR Design Leveraging AGR Technology

- Fuel options explored:
 - solid pin annular pellet
 - plate type fuel
- Fuel materials explored:
 - UO₂ UC
 - FCM
- Fuel materials explored:
 - FLiBe
 - FLiNaK
 - NaF-ZrF₄

Una Davis – Computational benchmarking of SFRs for safety analysis

- ESFR-SMART project aims to enhance safety of Gen-IV SFRs
- Improving public acceptance by proving new reactors are significantly safer than previous designs
- Work Package 2.1: calibration and validation of computational tools used for safety assessments
- SFRs have more complicated reactivity feedbacks than LWRs how do we model this? Are our current methods sufficient?
- Superphénix (1981-1998) data used for benchmark for computational models

Jonathan Dixon – Propagating uncertainties of graphite weight loss in AGR

- Nuclear industry very conservative. Uncertainty quantification is still a young concept to the industry as a whole.
- Computational project using reactor physics codes to quantify impact on reactor performance and safety parameters as graphite weight loss increases combined with other sensitivity studies.
- Interests in determining variation reduction techniques.
- Motivations
- Developing new techniques for industry which can assist in future code releases.
- UQ has a growing regulatory interest and could have a role in life extensions.

Jonathan Dixon – Propagating uncertainties of graphite weight loss in AGR

Nathan Read– Nuclear Electric Propulsion with Low Enriched Uranium

Why nuclear in space?

- Need power for propulsion and instrumentation
- RTGs and solar PV are not easily scalable to megawatt power levels
- Need to turn to fission reactors
- Cancelled *Prometheus* project was intended to utilise nuclear electric propulsion

Nathan Read– Nuclear Electric Propulsion with Low Enriched Uranium

Ideal fuel from technical viewpoint is U-235 BUT:

- Proliferation concerns
- Want civilian space exploration
- Security costs
- Can't collaborate easily with industry and academia
- Fine for USA but not workable in Europe

Project aims:

- Quantify impact of using LEU rather than HEU:
- Core mass
- Core volume
- Total system mass
- Materials compatibility
- Crash safety

Other topics:

- Genetic algorithms & TABU Search –core and assembly optimisation
- Collision history based sensitivities in burn-up calculations
- SMR cost analysis
- SMR supply chain analysis
- LEU nuclear power reactor for spacecraft applications
- Fuel behaviour model for OpenFOAM (GeN-FOAM)

