1

Impact of Recent Advancements in Multiphase Science on Nuclear Reactor Thermal-Hydraulics and Safety Studies

Michael Z. Podowski

NCBJ Swierk, Poland October 13, 2017

Center for Multiphase Research Rensselaer Polytechnic Institute

Podowski Engineering Consulting (PEC)

Presentation Overview	
q State of knowledge and progress made in the issues	
theoretical fundamentals of multiphase fluid mechanics and heat transfer	
formulation and limitations of closure laws (models vs. correlations)	
two-phase flow turbulence	
boiling and condensation heat transfer	
importance of understanding of the experimental and modeling uncertainties	
validation vs. tuning	
scaling principles and limitations	
and challenges associated with next generation reactors	
q Illustrations	
from micro-scale phenomena, at or below the individual bubble level, to macroscale, such as the physico-chemistry of core meltdown phenomena	
Podowski Engineering Consulting (PEC)	nter for Multiphase Research Rensselaer Polytechnic Institute

Use of Conservation Principles		
đ	Material conservation principles in Newtonian Fluid Mechanics are for Mass Momentum Energy	
đ	In the modeling of gas/liquid flows attempts have been made to introduce additional pseudo-conservation (or transport) equations for Interfacial area concentration Void fraction	
q	 Ad-hoc additions of unphysical extra variables (e.g., pressure) have also been made for purely numerical reasons (solver convergence problems) 	
q	 Such artificial steps do not contribute to the 'maturity' of the field and may lead to serious misperception and prediction errors 	
Podowsk	ki Engineering Consulting (PEC) Center for Multiphase Research CHRR Rensselaer Polytechnic Institute 8	

Limitations of Multifield Modeling Concept

- q Multidimensional ensemble-averaging concept is limited to dispersed flows, where the location of bubbles can be statistically considered to be a function of local flow conditions.
 q Slug flows do not belong to such a category, since lateral phase distribution is predominantly determined
- lateral phase distribution is predominantly determined by the shape of Taylor bubbles
- q Nevertheless, good predictions have already been demonstrated of slug flows using 3-D multifield models
- q Conclusion: model application has been stretched beyond conceptual limitations
- q It is important to notice that a one-dimensional two-fluid model of slug flows is still conceptually consistent

DNS simulation od slug flow [Behafarid ant al., 2015]

Center for Multiphase Research Rensselaer Polytechnic Institute 15

Podowski Engineering Consulting (PEC)

Summary of Selected Multiphase Modeling Issues

- q Multifield models of multiphase flow: importance of consistency of model formulation
- ^q Model complexity should be consistent with our understanding of underlying physic (both qualitatively and quantitatively)
- ^q In the case of varying geometry and boundary conditions (such as in the case of severe accident simulations), level of model complexity should decrease with increasing uncertainties (e.g., core meltdown progression)
- q Major unresolved issue: two- and multiphase flow turbulence
- q Assessment, verification and validation of component models in both standalone and coupled fashion, are of critical importance
- ^q Assessment of experimental uncertainties is vital (e.g., effect of spacers, CHF)

Center for Multiphase Research Rensselaer Polytechnic Institute

29

q Results should be (nearly) independent of numerical solution schemes

Podowski Engineering Consulting (PEC)

Indicators of Progress (Examples) q Improved understanding of the effect of bubble size on phase distribution in dispersed flows Extensive verification of closure laws of multiphase fluid mechanics, a including gas/liquids and gas/liquid/solid flows q Development and experimental validation of multiple-scale models of interfacial heat transfer with phase change (condensation and/or evaporation) q Evidence on the ability of the multifield model to properly capture major characteristics of two-phase and heat transfer in complex geometries of reactor coolant channels The formulation of theoretical mechanistic models of bubble ebullition q cycle Center for Multiphase Research -MiR 30 Podowski Engineering Consulting (PEC) Rensselaer Polytechnic Institut

