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Motivation

I Accidental atmospheric releases

of hazardous material pose great

risks to human health and the

environment.

I For example, release of CS-137 in

a steel mill in Algeciras, Spain,

V.1998 r.

I Registered in Switzerland, France

and Italy in June.

I It is necessary to have properly

fast response to such incidents.

I Emergency responders need

quickly recognize the source of

contamination.

Estevan, M. (2003). Consequences of the Algeciras

accident ..., Security of Radioactive Sources, 357.



Stochastic event reconstruction

I Based on sparse-point substance concentrations we have to
answer the questions:

I Where? How much? substance was released.
I Note: Time of giving the answer to this questions is crucial!
I How to do it?
I Build a model of pollutant transport in the atmosphere and

compare point concentrations derived from the model with
the measured data obtained from sensor networks

I Problem: Find the values of the pollutant transport model,
(such as the location of the release source) which will the best
„fit” our model to the observational data.
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Bayesian inference

I In the framework of Bayesian statistics all quantities included
in the mathematical model are modeled as random variables
with joint probability distributions.

I This randomness can be interpreted as parameter variability,
and is reflected in the uncertainty of the true values expressed
in terms of probability distributions.

I Bayesian methods reformulate the problem into searching for
a solution based on efficient sampling of an ensemble of
simulations, guided by comparisons with data.

I So, in practice we can are looking for the values of parameters
which are the most probable base on the data and some priori
information = a posteriori probability of dispersion model
parameters
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DATA

I DAPPLE - Dispersion of Air Pollution and its Penetration into
the Local Environment

I The DAPPLE experimental work took place in central London
between 2002-2006

I The mean building height in the study area is 21.6m (range
10 to 64m)

I Total mass emitted from point-source release was 323mg of
perfluoromethyl-cyclohexane (PMCH,C7F14)

I Two sets of long-term reference measurements were taken to
generate the wind data sets, rooftop City Council (WCC) (18
m) and tower top (190 m) winds.



DATA

I DAPPLE - Dispersion of Air Pollution and its Penetration into
the Local Environment

I The DAPPLE experimental work took place in central London
between 2002-2006

I The mean building height in the study area is 21.6m (range
10 to 64m)

I Total mass emitted from point-source release was 323mg of
perfluoromethyl-cyclohexane (PMCH,C7F14)

I Two sets of long-term reference measurements were taken to
generate the wind data sets, rooftop City Council (WCC) (18
m) and tower top (190 m) winds.



−0.164 −0.162 −0.16 −0.158 −0.156 −0.154

51.519

51.52

51.521

51.522

51.523

51.524

51.525

X

Y

Z

1

2

34

56

7
8

9

101112

13

14

15

16

17

18

La
tit

ud
e

Longitude

Figure 1: The sampling receptors 1-18 (yellow circles). Three fixed-point
tracer sources (green dots X,Y and Z); red star - City Council (WCC);
white rectangle - determined computational domain.



Figure 2: Fixed-point tracer source X; City Council (WCC);



MODEL
Requirements for the model of pollutant transport:

I It can not be too complicated, because we might do not know
all the necessary parameters such as wind field, the
coefficients of turbulence, weather conditions, etc.

I A short computation time.
I Adequate to the situation (proper model).
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MODEL QUIC
The QUIC uses a stochastic Lagrangian random walk approach to
estimate concentrations in a gridded domain. The model is
designed to use averaged wind fields produced by the QUIC-URB
system. Parcels, representing substance are transported with a
vector sum of mean winds from QUIC-URB plus turbulent
fluctuating winds computed using the random walk equations.
QUIC dispersion model is non deterministic
MLA Williams, Michael D., Michael J. Brown, and Eric M. Pardyjak. ”Development of a dispersion model for flow

around buildings.” Fourth Symposium on the Urban Environment. 2002.

Gowardhan, A. A., et al. ”Evaluation of the QUIC urban dispersion model using the Salt Lake City URBAN 2000

tracer experiment data—IOP 10.” Sixth Symposium on the Urban Environment/14th Joint Conference on the

Applications of Air Pollution Meteorology with the Air and Waste Management Association. Atlanta. January J.

Vol. 6. 2006.
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Figure 3: a) Extracted buildings (black rectangle) and greenery (green
ellipse) ; sampling receptors are numbered 1-18 (yellow circles), three
fixed-point tracer sources (green dots X,Y and Z); red star - Westminster
City Council (WCC) b) 3D model of city buildings designed in QUIC-GUI



Figure 4: a) The shape of the gas cloud - take from QUIC b)
Concentration of the substance at a height of 2 m



Bayesian Inference
Let θ be a parameter vector, given the prior distribution π(θ).

The goal of Bayesian inference is to approximate the posterior
distribution, π(θ|x) ∝ π(x|θ)π(θ), where π(x|θ) is the likelihood of

θ given the data x.



Approximate Bayesian Computation (ABC)
The ABC methods is to accept θ as an approximate posterior draw
if its associate data x is close enough to the observed data xobs.
Accepted parameters are a sample from π(θ|ρ(x, xobs) < ε) where
the ρ(x, xobs) is the chosen measure of discrepancy, and ε is a
threshold defining ”closeness margin”.

It is often difficult to define a adequate distance function ρ(x, xobs)
between the simulate and observe data.
In many cases it is replace with a distance defined on summary
statistics, ρ(S(x), S(xobs)).
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Approximate Bayesian Computation (ABC)
In ABC methods, Sequential Monte Carlo (SMC) is used in order
to automatically, sequentially ”clean” approximation of posterior
distribution to be used to generate proposals for further steps.
In methods, the set of samples with weights, called particles
sampled from the prior distribution π(θ), are propagated through a
sequence of intermediate posterior distributions
π(θ|ρ(x, xobs) < εt), t = 1, ..., T , until it represents a sample from
the target distribution, π(θ|ρ(x, xobs) < εT ).
These methods aim to generate draws from p(θ|ρ(x, xobs) < εt), at
each of a series of sequential steps t, where εt define a series of
thresholds.



ABC Algorithm (1)

I Initialize threshold schedule ε1 < ε2 < ... < εT
I Set t = 1

I For i = 1 to N
I Simulate θti ∼ π(θ) and x ∼ π(x|θti)
I Until ρ(x, xobs) < εt

I Set wti =
1
N

Bonassi, F. V., West, M. (2015). Sequential Monte Carlo with adaptive weights for approximate Bayesian

computation. Bayesian Analysis, 10(1), 171-187



ABC Algorithm (2)

I For i = 2 to T
I Compute new weights vt−1i ∝ wt−1i Kx,t(xobs|xt−1i )

I Normalize weights vt−1i

I For i = 1 to N
I Pick θ̃i from the θt−1j set with probabilities vt−1i

I Draw θti ∼ Kθ,t(θ
t
i |θ̃i) and x ∼ π(x|θti)

I Until ρ(x, xobs) < εt

I Compute new weights as

I wti ∝
π(θti)∑

j v
t−1
j Kθ,t(θ

t
i |θ

(t−1)
j )

I Normalize weights wti for i = 1 : N

Bonassi, F. V., West, M. (2015). Sequential Monte Carlo with adaptive weights for approximate Bayesian

computation. Bayesian Analysis, 10(1), 171-187



Data and distance measure
The choice of distance measure or summary statistics is a crucial
step in ABC.

Since distance measure are not sufficient in many cases, this choice
involves a trade-off between loss of information and reduction of
dimensionality.
In those type of problems we chose normalize approximation error
between all the data obtained to the current time step t with is
also called Fractional Bias (FB).
The FB is used to indicate a bias towards underprediction or
overprediction of concentration data by the model.
Cox, W.M.: Protocol for determining the best performing model. Technical report, Environmental Protection

Agency, Research Triangle Park, NC (United States). Technical Support Div. (1992)
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Data and distance measure
The ρ(xt, xtobs) measure in time step t:

ρ(xt, xtobs) =
1

18

18∑
j=1

(
1

t

t∑
i=1

|CSji − Ĉ
Sj
i |

CSji + ĈSji
), (1)

under the assumption, that when CSji = 0 and ĈSji = 0 then
|CSji −Ĉ

Sj
i |

CSji +ĈSji
= 0;

Given that the concentration CSji has always value ≥ 0, a
ρ(xt, xtobs) is always between 0 and 1 . Let us recognize that
ρ(xt, xtobs) = 0 is the situation when our prediction fit perfectly. In
opposite ρ(xt, xtobs) = 1 does not fit at all.
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Threshold schedule and weights
The most commonly used adaptive scheme for threshold choice is
based on the quantile of the empirical distribution of the distances
between the simulated data and observations from the previous
population θt−1j .
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Transition kernel
In this type of inverse problems the parameters are often highly
correlated and multimodality is very common.

Especially, when the (x, y) domain contains a lot of prohibited
regions, like buildings. Samples may tend to splitting in a
disjointed group by filling out a different canyons streets.
Transition kernel Kθ,t(·|·) - multivariate normal kernel. In such
cases it is interesting to consider the use of a local mean and
covariance matrix. Instead, computing the covariance matrix based
on all the samples from (t− 1) better idea is use only limited
information about the local correlation. In [Filippi S. and others :
On optimality of kernels for approximate Bayesian computation
using sequential Monte Carlo one the proposal methods is to use
the multivariate normal kernel base on the M neighbours.
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Transition kernel - example
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Parameters vector
The following parameters vector describe the source of the release:

θ ≡ (x, y, z, q, l, s). (2)

The (x, y) is source position within computing domain, (z) is the height
of source location above ground level, (q) is a mass of release, (s) is the
start time of release and (l) is duration time.
In the presented procedure we declare the following priori distribution on
particular parameters:

π(θ1) ≡
(x, y) ∼ UΘ([100, 600], [100, 500])

z ∼ Gamma(3, 3)
q ∼ U(10, 500)

l ∼ U(0, 1800)

s ∼ U(0, 180).
(3)



Results of DAPPLE reconstruction experiment
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Figure 7: Scatter plot of all samples generate in the subsequent time steps t = 2, 3, ..., 10 in (x, y) space
of source location. The red cross marks the true source position



Results of DAPPLE reconstruction experiment
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Figure 8: Evolution of the posteriori probability distribution for x, y and q parameters. The red vertical line
represents target value of parameters. All plots are taken form for subsequent time steps intervals



Results of DAPPLE reconstruction experiment
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Results of DAPPLE reconstruction experiment
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Figure 10: Prior and marginal posterior probability densities for the joint inference of six parameters.



Results of DAPPLE reconstruction experiment

Figure 11: The bivariate and marginal posterior distributions for all searched parameters
θ ≡ (x, y, z, q, l, s).
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