NRG

HIGH FIDELITY NUMERICAL SIMULATION OF A SINGLE PHASE PRESSURIZED THERMAL SHOCK

Seminar @ NCBJ, Poland

Afaque Shams

<u>shams@nrg.eu</u> 09/02/2017

EU DuC=N

Contents

- A brief Introduction of NRG: CFD Group
- Introduction and goal
- Conceptual design of a PTS case
- **PART I:** Calibration and Optimization of the PTS design
- **PART II:** Assessment of NEK5000 to perform DNS
- **PART III:** Towards the DNS of the PTS case
- Summary

Introduction: NRG

NRG Locations

Research & Innovation

Research Program

- Reactor Operation & Safety
- Advanced Nuclear Technology
- Decommissioning
- Radiation Protection

International Cooperation

- EU framework programs (FP7 – H2020)
- OECD/NEA benchmarks
- IAEA CRPs and TWGs
- US-DOE INERI
- Bilateral collaborations

NRG-NCBJ

CFD Group

- ~11 qualified specialists
 - Total professional experience of almost 100 person-years
 - International
 - 3 master students
- Mission:
 - To provide support for safety and design improvement
- CFD Codes
 - STAR-CCM+
 - ANSYS-FLUENT, ANSYS-CFX
 - OpenFOAM
 - NEK5000
 - Code_Saturne
 - FDS

Introduction and goal

Introduction and Goal

- Main issues for *single-phase* PTS
 - Turbulent mixing of the ECC water
 - CFD grade validation exists, e.g., from ROCOM

Introduction and Goal

- Main issues for *single-phase* PTS continued
 - Turbulent mixing of the ECC water
 - Heat transfer RPV walls
- Both involve complex 3D phenomena
 CFD provides more realistic representation
- CFD (pragmatic) models need to be validated for PTS using
 - Experimental data
 - High fidelity Direct Numerical Simulation (DNS) data

Introduction and Goal

The main objective is to generate a high quality DNS database

The first step is to design a <u>numerical experiment</u> in order to perform such high quality **DNS computations with the spectral element & deriver states** in order to:

Simulate a *physically meaningful* PTS benchmark configuration for the validation of CFD codes.

- 1. isolate the phenomena of interest from the overall real scenario;
- 2. fulfil the foreseen computational challenges of DNS.

Conceptual design of a PTS case

Conceptual design

Parameters based on ROCOM test facility

PART I:

Calibration and Optimization of the PTS design

Design calibration and optimization

- Calibration and optimization of the PTS case based on pre-cursor RANS analyses
- Main characteristics of the pre-cursor RANS computations
 - STAR-CCM+ v 8.06 CFD code
 - RANS: cubic non-linear k-ε model
 - Second order upwind schemes
 - Hexahedral trim mesh ~ 3.7 M (y+ < 1)
 - Prism layers next to the wall for both fluid and solid

Design calibration and optimization

- Step 1 Calibration of flow properties
- Step 2 Calibration of Inlet 2 velocity
- Step 3 Square duct shaped cold leg
- Step 4 Calibration of the sizes of the computational domain
- Step 5 Scaling of the Reynolds number
- Step 6 Mesh estimation for DNS
- Step 7 Scaling of Prandtl number to 1

Step 8 – Isothermal vs Adiabatic boundary conditions

Case	U1 [m/s]	U2 [m/s]	Tref [K]	Pr	Re _t
1	0.018	5% U1	293	7.01	96
2	0.018	5% U1	313	4.34	138
3	Step 1 –	Calibratior	n of f fð w pr	operties	184
4	0.018	5% U₁	353	2.23	232

$$Pr = \frac{v}{\alpha} = \frac{momentum \, diffusivity}{thermal \, diffusivity}$$
$$\frac{\eta_{batchelor}}{\eta_{kolmogorov}} = Pr^{-\frac{1}{2}} \qquad for \, Pr > 1$$

NZG

Step 1: Calibration of flow properties Vessel Interface Middle Temperature at Interfaces Downcomer

Case	U1 [m/s]	U2 [m/s]	Tref [K]	Pr
5	0.018	0	353	2.23
6	0.018	5% U1	353	2.23
Štep	2 – Calibrat 0.018	ion of Inle	et 2 velocity	/ (U ²²³ 2.23

□ Force the impinging cold jet downward in the downcomer

□ Create a certain level of thermal mixing

Case	U1 [m/s]	U2 [m/s]	Tref [K]	Pr	Cold leg
7	0.018	10% U1	353	2.23	Circular pipe
9	Step & -	Square	duct ₃ shaped	<u>co</u> ld	leg _{quare} duct

Step 4 – Calibration of bottom height (H2)

Velocity at the mid cross-section of Downcomer

Step 4 – Calibration of width (W)

Velocity at the mid cross-section of Downcomer

Case U1 [m/s] U2 [m/s] Tref [K] Pr Re_τ 9 0.018 10% U1 353 2.23 ~230 10 Step0.5135 Scaling Of the Reynolds gumber 180

Step 6 – Mesh Estimation for DNS

Step 6: Mesh estimation for DNS

Turbulent scales at Interfaces

- ~4 billion grid points
- 2. Smart meshing strategy based on block structures:

~1.6 billion grid points

Still challenging for the currently available computer power.

Step 7 – Scaling of Prandtl number to 1

Step 7 – Scaling of Prandtl number to 1

Temperature at Interfaces

317.

329.

341.

353.

305.

Mesh estimations for DNS

~ 0.9 billion grid points for conjugate heat transfer case

From IAEA-TECDOC-1627: Pressurized Thermal Shock in Nuclear Power Plants: Good Practices for Assessment

Step 8 – Adiabatic vs Isothermal BC's

Barrel interface Middle of Downcomer

Temperature at Interfaces

Variation of Temperature through the vessel wall thickness

Mesh estimations for DNS

~ 0.55 billion grid points w/o conjugate heat transfer case

PART II:

Assessment of NEK5000 to perform DNS

NEK5000

- Open source code (ANL);
- High-order **SEM S**pectral **E**lement **M**ethod;

Simulation parameters

Main parameters, computational domain, mesh distribution

Elements = 10400 Total Mesh = 7.7 M

Averaging time:
$$t^{+} = t \frac{{u_{\tau}}^2}{\nu} = 16\ 140$$

Velocity: Mean

Velocity: RMS

Budget terms: balance

Budget terms: dissipation

Budget terms: production

Budget terms: turbulent transport

Budget terms: pressure diffusion

PART III:

Towards the DNS of the PTS configuration

Simulation parameters (only fluid)

 $Re_{\tau,duct} = 180$

Pr = 1

Two Passive Scalars (PS) to represent:

(i) iso-flux and (ii) isothermal B.C's

Pol. order ^(space)	= 9
Pol. order ^(time)	= 3 (explicit)
CFL	= 0.2

Mesh:

- 550 Million points
- 0.76 Million Elements

Boundary conditions (only fluid)

INLET 1

- U = 1.
- T = 0.
- T = 0.

INLET 2

- U = 0.1
- T = 1.
- T = 1.

BARREL & RPV WALLS

- No-slip
- q''=0.
- T = 1.

Flow field

PS 1: Isoflux NG PS 2: Isothermal

Flow field: On-going Computations @ N=3

Flow field: On-going Computations @ N=3

• As a part of this **<u>NRG-NCBJ</u>** Collaboration:

– PTS case with N5 will be performed on

– 5000 processors for several months

– Result: Under resolved DNS

• To achieve a **high quality DNS** this PTS computation needs to be performed with **N7** (or N9).

Questions?

Disclaimer

EU DuC = N

Goods labeled with an EU DuC (European Dual-use Codification) not equal to 'N' are subject to European and national export authorization when exported from the EU and may be subject to national export authorization when exported to another EU country as well. Even without an EU DuC, or with EU DuC 'N', authorization may be required due to the final destination and purpose for which the goods are to be used. No rights may be derived from the specified EU DuC or absence of an EU DuC.

