Efficiency and scalability on
computing cluster - can It be
achieved ?

Stawomir Potempski
DUZ/UZ3
National Centre for Nuclear Research

Content

Efficiency and scalability of computer systems
Analysis of execution time of parallel algorithms

Example: system of linear equations with
tridiagonal matrix derived from transport equation

Other applications

CPU time

MFLOPS — number of millions floating point operations per
second

MFLOPS(A)= gy, op(A)(Ty cpu(A) <10°)

Ty cpu(A) — user time CPU for instruction A

Nqp op(A) — NUmMber of floating point instructions A

MFLOPS — does not distinguish different floating point
operations (e.g. sum vs square root), however it is
convenient for comparing various versions of the program
Implementation of the same computing algorithm.

CPU time

Taking into account memory operations:

TU_CPU(A) = (ncycle(A)+nmm_cyc|e(A))°tcycle
Nim_eyeles(®) = Nread cyclest?) T Nrite cyctes(A)

n read_cycles (A) =N read_op (A) ° rread_miss_rate (A) °n miss_cycle

Ty cpulA) = Ninstra)* LCP1 (A) + Ny 00 (A) *Tiiss rate(A)®

nmiss_cycle] .tcycle

CPI(A) - clock cycles per instruction A
Average access time to memory:

tread_access(A) = 1:read_hit t rread_miss_rate(A) .tread_miss
Further consideration can be done for different levels of cache
memories.

Measures of efficiency of paralle
programs

IO(n) execution time of parallel program of
Size n on p processors = time from the start
till the end of all tasks running on all
processors, containing:

— Time of local computation

— Time of data exchange between processors
— Synchronization time

— Waiting time

Measures of efficiency of paralle
programs

Cost of execution parallel program
C,(n)=pT,(n) — measure of total work

Cost is optimal when: C,(n)=T,(n) (time of the
fastest sequential program)

Speedup= execution time of sequential program
/execution time of parallel program

Efficiency = cost of sequential program /cost of

parallel program
cC, T T
E =—"=—- S =—t=pE <p
" Cc, pT, " T, P
S

P P
In practice superlinear speedup can be observed (S,>p)

Amdahl’s and Gustafsion’s laws"”

Amdahl’s law:

If for some problem, serial part is s (0<s<1), and 1-s is
realized parallelly on p processes then:

T, 1 0o s _h__p 1

= —> 0 — —_
Sp+(1—S) po= T, sp+(@-s)r>=s

E =
p pT

P

For example if s>10% then S, < 10
Gustafson’s law: Speedup Is scalable for enough big

problems: t
° +1
. _ t+t,(nY) t+T,(n)-t, T, (n)-t, I
" ot+t(np) (T (n)-t)/p t, 1
T,(n)—-t, p

t, — time of serial part, t, — time of parallel part

WIKIPEDIA - a driving metaphor
Amdahl’s law:

Suppose a car Is traveling between two cities 60 miles
apart, and has already spent one hour traveling half the
distance at 30 mph. No matter how fast you drive the last
half, it is impossible to achieve 90 mph average before
reaching the second city. Since it has already taken you 1
hour and you only have a distance of 60 miles total; going
Infinitely fast you would only achieve 60 mph.

Gustafson’s law:

Suppose a car has already been traveling for some time at
less than 90mph. Given enough time and distance to travel,
the car's average speed can always eventually reach
90mph, no matter how long or how slowly it has already
traveled. For example, if the car spent one hour at 30 mph,
It could achieve this by driving at 120 mph for two
additional hours, or at 150 mph for an hour, and so on.

Scalability

Algorithm is scalable if its efficiency Is of constant order

along with the increase of the number of processors
l.e. E, = O(1) gdy p—oo
Example: summing is not scalable

E, = i — 0
" n+plogp po= m

Notation:

O(g(n))=f(n)<=3c>0,0< f(n)<c(g(n))
Q(g(n))=f(nN)<=3c>0,0<cg((n)< f(n)
©(g(n) = f(n) < 3c,,¢, >0,¢,g(n) < f (n) <c,g(n)

|[———— ———»

|e—— n/p ——»|=log p »|

Parallel efficiency

 Efficiency: effectiveness of parallel algorithm in
comaprison with serial processing

 Load balancing: distribution of tasks among
processors

« Concurrency: set of processors functioning
simultaneously

« QOverhead: additional work not existing in
sequential algorithm

Efficiency is maximal when: load balancing and
concurrency are maximal and overhead is minimal

Efficiency and scalability

Execution time = (total work)/(velocity)
— sequential: T,=W,/V(M)
— parallel: T,=W /(pV(M/p))
W-work, M-memory, V-velocity (flops)
Parallel overhead: W,-W,
W, Is a function W,(n), where parameter n
characterizes the problem, assuming
W,(n)-EW(n,p)=0 for some constant E, this

dependency defines (implicitly) n as a function
of p.

Efficiency and scalability

Dependency W, (n)=EW,(n,p), defines n(p).
n defines the characteristics of the problem — for example
multiplying two matrices leads to W,(n)=0(n3)

W,(n(p)) - i1soefficiency function.

In case of summation:
W, =EW, n~E(n + p log p), hence:
n=0(plogp), Win,p) =06Oplogp)

I.e. If the size icreases like ~ p log p, then the algorithm is
scalable, however execution time grows as log p.

Efficiency and scalability

In general: T, = W,/(pE) Is constant If isoefficiency
function is of order @(p), otherwise T, grows as p
grows.

Isoefficiency of order O(p), O(plogp), O(p3?) is
desirable, while isoefficiency > O(p?) means weak
sclability because, T, grows faster than linear with the
Increased number of Processors .

Isoefficiency of order O(p) for many problems cannot be
reached.

Example: linear transport equation

1-D transport equation: w,(t,z) + au,(t,x) = 0

Grid: {tn,xr}, t, = nT,) = kh.
Integrating over [Tws i1 X [tn, tnid]

Prt+1 ftada tnt1 [kt
w,dtdx + « w,dxdt = 0
L tn in i

and using trapezoidal rule for integrals we get (,,box scheme”):

h ﬂT Il Tt Tl
E[(”+1‘|'“;j-_i1 (“f+“a+1]‘|‘—[('”L-+1 ‘|_“.t::|-|_11 — (uy, +u,, -H)] =0

2

n+1 n+1 T
ﬂfu:Hl—|—E;r*iu:L —buLJrl—l—auL. a=1+Aa, b=1— Aa.)\:E.

System of linear equations

EEEE

‘EEEE

2 3 3
|
Q
§ g 5
. Q| =
S
o 0
2 Q<
Q| <
<
°= Q| <
Fa.._ﬂ,

System with tridiagonal matrix

" dy bg 1 [X0 | _fO_
aq dl bl X1 — fl
anr dar | | Xy | yivd

Thomas algorithm, progonka — version of Gauss elimination
Solution iIs based on the formulas:

Xj =% Xj117p;

b, e
aj Xjq td; do
g o =—Litkimn g _Jo
/ ajoj_;td; ’ d
Xm = Pu

Algorithm is essentially sequential with complexity O(M)

System with tridiagonal matrix

" do zn . | M=l (R+1)-1
@i @M | - number of processors
_ o, dy| A Dy Bi~(R+1(R+1)
Dy By Xo | Fy
Al Dl Bl L El
Ag DE BE 12 — EE
Aj Ds B X3 Fs
A,;l D4] _Xél i _F4 i
Xo = Xo — D;'BoX; X, = D'F..
X, =X, - D'A, X, — D7'B, X, A = Qy(R+1)€0€ s

- Bs — b{3+1]R—|—3€REE=
X2 — XQ - D;lﬂle - DE_IBQX;;

X3 = X3 — D;'A3X, — D;'B: X,
Xy =X, — D;'A4X;

e, - Versor

System with tridiagonal matrix

A\

By multipying first |, -1 equations by e’ and last
Even unknowns |, -1 by e’y we get Schur system of size 2(1,-1)

Zp = EDX
Zy = €, ' X,
Ly = EEX,-;
g = EE;]Q

T w~
Zap—1)—2 = ey Xip—1

Odd unknowns

Zy = el Xy
Z;] = E};Xl
ZE, = E};_Xg
Z-;r = E};_Xg

Zog,—1)+1 = € X2

bnfﬁpru;..[] + =1 = E‘Rlu
zo0 + nieg;Wﬂn + bjﬁgvi,‘.g = E,DX
1 1 71 -
a enﬂr z1 L+ b ER’L z9 1 z3 = Eﬂ.}t
zZo + a.ieg;ﬂfgzg + bge Vozy = EDX
a enﬁr 229 + bEEI{Vﬂ;._; + z5 = E}:.i-g
z4 + @ ERW S = E‘Tig

5 -1 5 e 51T
W?* =D ey = |wy, wi, -, wh]",

V=D lep = [Vgs Uiy =y VS 1T,

&

Algorithm (S. Bondelli)

1. Finding X, and vectorsV,, W,. This can be

done by solving system with tridiagonal matrices D,
and right hand sides: F, e,, eg. Typical Thomas
algorithm can be used (,,progonka™).

2. Exchange of information such that in each
processor all the coefficients and right hand sides are
available (MPI1_Allgather).

3. In each processor Schur system Is solved

Algorithm (S. Bondelli)

4. Then the following equations produces solution,
such that at processor k X, is available.

XD — XD - bRVDZ{]

Xl — Xl — ﬂ-R_|_1TfI”lel — bgR+1VlZ2

Xo = Xz — G-E{RH}H”?ZZS — 53R+2V234
X3 = Xa — G-S{R+1}I’T”?3Z5 — balR—l—SVSZG
X4 — X,._l — EI-_“R_FI}I’I”“IZ?

As all the steps in the algorithm have complexity linear
with respect to the size of the problem and number of
processors, then isoefficiency is of order O(p).

Some important differential equations

« Transport equation:
%= V- (DVc) — V- (c) + R,
where v - velocity, R — source, ¢ — variable of interest

e Conservation law:
ou]
3¢ + dw(F(u)) =0

« Navier-Stokes equations:

au+\7A—\7
5 Ty Vu—du=-Up

divu =0
« Heat equation:

au—V' DV
Fri (DVu) + f(x,t)

Application to heat equation

ADI — Alternative Direction Implicit method Peaceman-
Rachfort for 2D heat equation

n+1/2 __n

1
Vi Yij _ D qp N5 2. n
’ T/2 - E{5xyi,]' + 5yyi,j
n+1_.n 1
Yij “Yij _ D gy N3 2. n+l
° /2 T 9 {Sxyi,j + é\y:yi,j }

where &, ¢, = finite differences with respect to x,y.

This leads to the system of linear equations with
tridiagonal matrices. Extension to 3D is straightforward.
This concept can be generalized for some ,,splitting”
numerical schemes.

Splitting techniques

« Example: 2D transport equation: w: + aju., + asu,, =0
Uy + Xq1Up, — D! 'U(tn& ') — fu’(tru ')

wy + oWy, = [} U—’(trl) — L(fn—l—l)
« Example: 2D convection-diffusion equation:

u; + aVu —rvAu =0

] Uy + Uy o, = 0, uy(t,,) = u(t,,-)
Transport equation

fOr Ul, UZ U2+ + QxolUo, xq — [} UE() — Tfl(ffi+1)

Uz ¢+ — yﬂ'S.:vl.;{q — UE “3() — u’2(tn,—|—1)

Heat equation
for u,, u,

Uyt — VUggga, = 0, wy(ty,) = us(tnsi,+)

The Stokes problem

The Stokes equation describes the motion of an
Incompressible viscous flow in n-dimensional
domain (n=2,3): find u — velocity and p — pressure
such that:

—Au—gradp="f inQ u:Q—R",
divu=0 InQ P: Q>R
U=u, on oQ

Applying finite element, finite difference or finite volume method,
finally we get the system of linear equations with specific form.

Algebraic system

T f
Primal problem: S 5 — A By 14 —| —
P B, 0 |P] |9

Matrix A, IS symmetric positive definite
Matrix B," has full column rank

Matrix B, A, 1B, " is symmetric positive definite
Matrix S is symmetric invertible non-definite
(it has N positive and M negative eigenvalues)

Instead of solving primary problem with matrix S it’s better to
solve the following dual problem:

BhAh_lBkTE: BhAh_lj—Q
Au=1f-B p

Variational formulation of
stationary Navier-Stokes equations

Multiplying the first NS equation by smooth function v vanishing on
boundary, integrating by parts, and multiplying the second NS equation
by some function g we get formulation of the following form:

a(u,v)+bGu,v)y—(diw,p)=(f,v) YWweX (v,Vp)=—diw,p)
(divi,q)=0 Vge M

a(u,v)= JVH -Wdx b(u,v,w)= j(u W) - wdlx=

nr,rl

a: XxX—>R b:XxXxX—>R
X=(H,(Q))' M=LC()/R

Approximation of stationary Navier-
Stokes equations

a(Uy, Vi) +b(Uy, Uy, vy) = (divvy, p) =(T,v,) - W, e X,

(divu,, g,)=0 vq, eM,

X, cX M, cM
Approximation using the iteration of the Stokes problem
Start with: (u’, p,)
Knowing (u', pr) find (u'™, pi™) such that:
au™,v,)+b(u”,u" v,)= (divv, p™) =(fv,) W, X,

(divu™,q,)=0 Vg, eM,

Schur complement

A B
M= D], M~(p+0q)x(p+q), A~pxp, D~0xg

Schur complement: A-BD-1C ~pxp

Ax+ By =f

Cx+ Dy=g
If both D and Schur complement can be inverted,
then the problem is reduced to invert two
matrices of dimensions gxg and pxp respectively

(A-BD"1C)x=f-BD"'g

Conclusions

 There Is no straightforward way to transfer the
code from sequential to parallel form

 Typically new numerical algorithms have to be
developed to efficiently perform simulations
on computing cluster

* |t is worth to start with simpler problems,
which can be further utilised for more complex
ones - splitting techniques can be then applied

