
Efficiency and scalability on

computing cluster - can it be

achieved ?

Sławomir Potempski

DUZ/UZ3

National Centre for Nuclear Research

Content

• Efficiency and scalability of computer systems

• Analysis of execution time of parallel algorithms

• Example: system of linear equations with

tridiagonal matrix derived from transport equation

• Other applications

CPU time

MFLOPS – number of millions floating point operations per

second

MFLOPS(A)= nflp_op(A)/(TU_CPU(A) •106)

TU_CPU(A) – user time CPU for instruction A

nflp_op(A) – number of floating point instructions A

MFLOPS – does not distinguish different floating point

operations (e.g. sum vs square root), however it is

convenient for comparing various versions of the program

implementation of the same computing algorithm.

CPU time
Taking into account memory operations:

TU_CPU(A) = (ncycle(A)+nmm_cycle(A))•tcycle

nmm_cycles(A) = nread_cycles(A) + nwrite_cycles(A)

nread_cycles(A) = nread_op(A)•rread_miss_rate(A)•nmiss_cycle

TU_CPU(A) = ninstr(A)•[CPI (A) + nrw_op(A) •rmiss_rate(A)•

nmiss_cycle] •tcycle

CPI(A) - clock cycles per instruction A

Average access time to memory:

tread_access(A) = tread_hit + rread_miss_rate(A) •tread_miss

Further consideration can be done for different levels of cache
memories.

Measures of efficiency of parallel

programs

Tp(n) – execution time of parallel program of

size n on p processors = time from the start

till the end of all tasks running on all

processors, containing:

– Time of local computation

– Time of data exchange between processors

– Synchronization time

– Waiting time

Measures of efficiency of parallel

programs
Cost of execution parallel program

 Cp(n)=pTp(n) – measure of total work

Cost is optimal when: Cp(n)=T1(n) (time of the
fastest sequential program)

Speedup= execution time of sequential program
/execution time of parallel program

Efficiency = cost of sequential program /cost of
parallel program

ppE
T

T
S

pT

T

C

C
E p

p

p

pp

p  111

In practice superlinear speedup can be observed (Sp>p)

Amdahl’s and Gustafsion’s laws

Amdahl’s law:

 If for some problem, serial part is s (0≤s≤1), and 1-s is
realized parallelly on p processes then:

sssp

p

T

T
S

ssppT

T
E

p
p

p
p

p

p

1

)1(
0

)1(

1 11










For example if s>10% then Sp < 10

Gustafson’s law: Speedup is scalable for enough big

problems:

p

ptnT

t

tnT

t

ptnTt

tnTt

pntt

ntt
S

n

s

s

s

s

ss

ss

ps

ps

p





















1

)(

1
)(

/))((

)(

),(

)1,(

1

1

1

1

ts – time of serial part, tp – time of parallel part

WIKIPEDIA – a driving metaphor

Amdahl’s law:

• Suppose a car is traveling between two cities 60 miles
apart, and has already spent one hour traveling half the
distance at 30 mph. No matter how fast you drive the last
half, it is impossible to achieve 90 mph average before
reaching the second city. Since it has already taken you 1
hour and you only have a distance of 60 miles total; going
infinitely fast you would only achieve 60 mph.

Gustafson’s law:

• Suppose a car has already been traveling for some time at
less than 90mph. Given enough time and distance to travel,
the car's average speed can always eventually reach
90mph, no matter how long or how slowly it has already
traveled. For example, if the car spent one hour at 30 mph,
it could achieve this by driving at 120 mph for two
additional hours, or at 150 mph for an hour, and so on.

Scalability
Algorithm is scalable if its efficiency is of constant order

along with the increase of the number of processors

i.e. Ep = O(1) gdy p→∞

Example: summing is not scalable

0
log 





p

p
ppn

n
E

Notation:

)()()(,0,)())((

)()(0,0)())((

))(()(0,0)())((

2121 ngcnfngcccnfng

nfngccnfng

ngcnfcnfngO







Parallel efficiency

• Efficiency: effectiveness of parallel algorithm in
comaprison with serial processing

• Load balancing: distribution of tasks among
processors

• Concurrency: set of processors functioning
simultaneously

• Overhead: additional work not existing in
sequential algorithm

Efficiency is maximal when: load balancing and
concurrency are maximal and overhead is minimal

Efficiency and scalability

Execution time = (total work)/(velocity)

– sequential: T1=W1/V(M)

– parallel: Tp=Wp/(pV(M/p))

W–work, M-memory, V-velocity (flops)

Parallel overhead: Wp-W1

W1 is a function W1(n), where parameter n
characterizes the problem, assuming

W1(n)-EWp(n,p)=0 for some constant E, this
dependency defines (implicitly) n as a function
of p.

Efficiency and scalability

Dependency W1(n)=EWp(n,p), defines n(p).
n defines the characteristics of the problem – for example

multiplying two matrices leads to W1(n)=O(n3)

W1(n(p)) - isoefficiency function.

In case of summation:

W1 = EWp n~E(n + p log p), hence:

n =Θ(p log p) , W1(n,p) = Θ(p log p)

i.e. if the size icreases like ~ p log p, then the algorithm is
scalable, however execution time grows as log p.

Efficiency and scalability

In general: Tp = W1/(pE) is constant if isoefficiency
function is of order Θ(p), otherwise Tp grows as p
grows.

Isoefficiency of order O(p), O(plogp), O(p3/2) is

desirable, while isoefficiency > O(p2) means weak
sclability because, Tp grows faster than linear with the
increased number of processors p.

Isoefficiency of order O(p) for many problems cannot be

reached.

1-D transport equation:

Grid:

Integrating over

and using trapezoidal rule for integrals we get („box scheme”)”:

Example: linear transport equation

System of linear equations

System with tridiagonal matrix

Thomas algorithm, progonka – version of Gauss elimination

Solution is based on the formulas:

𝑥𝑗 =∝𝑗 𝑥𝑗+1+𝛽𝑗

∝𝑗= −
𝑏𝑗

𝑎𝑗 ∝𝑗+1 +𝑑𝑗
 ∝0= −

𝑏0

𝑑0

𝛽𝑗 = −
𝑓𝑗−𝛽𝑗−1

𝑎𝑗∝𝑗−1+𝑑𝑗
 𝛽0=

𝑓0
𝑑0

𝑥𝑀 = 𝛽𝑀
Algorithm is essentially sequential with complexity O(M)

𝑥0
𝑥1
… .
𝑥𝑀

=

𝑓0
𝑓1
… .
𝑓𝑀

System with tridiagonal matrix

M=lp(R+1)-1

lp- number of processors

As, Ds, Bs ~(R+1)x(R+1)

ei - versor

𝑋𝑠 =

System with tridiagonal matrix

Even unknowns

Odd unknowns

By multipying first lp -1 equations by eT
R and last

lp -1 by eT
0 we get Schur system of size 2(lp-1)

Algorithm (S. Bondelli)

1. Finding

done by solving system with tridiagonal matrices Ds

and right hand sides: Fs, e0, eR. Typical Thomas

algorithm can be used („progonka”).

2. Exchange of information such that in each

processor all the coefficients and right hand sides are

available (MPI_Allgather).

3. In each processor Schur system is solved

𝑋𝑠 and vectors Vs, Ws. This can be

Algorithm (S. Bondelli)

4. Then the following equations produces solution,

such that at processor k Xk is available.

As all the steps in the algorithm have complexity linear

with respect to the size of the problem and number of

processors, then isoefficiency is of order O(p).

Some important differential equations

• Transport equation:

𝜕𝑐

𝜕𝑡
= 𝛻 ∙ 𝐷𝛻𝑐 − 𝛻 ∙ 𝑣 𝑐 + 𝑅,

where 𝑣 - velocity, R – source, c – variable of interest

• Conservation law:

𝜕𝑢

𝜕𝑡
+ 𝑑𝑖𝑣 𝐹 𝑢 = 0

• Navier-Stokes equations:
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑢 − ∆𝑢 = −𝛻𝑝

𝑑𝑖𝑣𝑢 = 0

• Heat equation:
𝜕𝑢

𝜕𝑡
= 𝛻 ∙ 𝐷𝛻𝑢 + 𝑓(𝑥, 𝑡)

Application to heat equation

ADI – Alternative Direction Implicit method Peaceman-

Rachfort for 2D heat equation

•
𝑦𝑖,𝑗
𝑛+1/2

−𝑦𝑖,𝑗
𝑛

𝜏/2
=
𝐷

2
{𝛿𝑥
2𝑦
𝑖,𝑗

𝑛+
1

2 + 𝛿𝑦
2𝑦𝑖,𝑗
𝑛 }

•
𝑦𝑖,𝑗
𝑛+1−𝑦𝑖,𝑗

𝑛

𝜏/2
=
𝐷

2
{𝛿𝑥
2𝑦
𝑖,𝑗

𝑛+
1

2 + 𝛿𝑦
2𝑦𝑖,𝑗
𝑛+1}

where x, y = finite differences with respect to x,y.

This leads to the system of linear equations with

tridiagonal matrices. Extension to 3D is straightforward.

This concept can be generalized for some „splitting”

numerical schemes.

Splitting techniques

• Example: 2D transport equation:

• Example: 2D convection-diffusion equation:

Transport equation

for u1, u2

Heat equation

for u3, u4

The Stokes problem







onuu

Rpindivu

Ruinfgradpu n

0

:0

,:

The Stokes equation describes the motion of an

incompressible viscous flow in n-dimensional

domain (n=2,3): find u – velocity and p – pressure

such that:

Applying finite element, finite difference or finite volume method,

finally we get the system of linear equations with specific form.

Algebraic system

Matrix Ah is symmetric positive definite

Matrix Bh
T has full column rank

Matrix BhAh
-1Bh

T is symmetric positive definite

Matrix S is symmetric invertible non-definite

(it has N positive and M negative eigenvalues)

Instead of solving primary problem with matrix S it’s better to

solve the following dual problem:

pBfuA

gfABpBAB

T

hh

hh

T

hhh



  11







































g

f

p

u

B

BA

p

u
S

h

T

hh

0
Primal problem:

Variational formulation of

stationary Navier-Stokes equations

Multiplying the first NS equation by smooth function v vanishing on

boundary, integrating by parts, and multiplying the second NS equation

by some function q we get formulation of the following form:

Approximation of stationary Navier-

Stokes equations

hhh

n

hhh

n

hh

nn

h

n

n

h

n

h

n

h

n

h

hh

Mqqudiv

Xvvfpvdivvuubvua

thatsuchpufindpuKnowing

puwithStart

h

hhhh











0),(

),(),(),,(),(

:),(),(

),(:

1

11

11

00

Approximation using the iteration of the Stokes problem

MMXX

Mqqudiv

Xvvfpvdivvuubvua

hh

hhhh

hhhhhhhhhh







0),(

),(),(),,(),(

Schur complement

𝑀 =
𝐴 𝐵
𝐶 𝐷

, M~(p+q)x(p+q), A~pxp, D~qxq

Schur complement: A-BD-1C ~pxp
𝐴𝑥 + 𝐵𝑦 = 𝑓
𝐶𝑥 + 𝐷𝑦 = 𝑔

If both D and Schur complement can be inverted,

then the problem is reduced to invert two

matrices of dimensions qxq and pxp respectively

(A-BD-1C)x=f-BD-1g

Conclusions

• There is no straightforward way to transfer the

code from sequential to parallel form

• Typically new numerical algorithms have to be

developed to efficiently perform simulations

on computing cluster

• It is worth to start with simpler problems,

which can be further utilised for more complex

ones - splitting techniques can be then applied

