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CPU time 

MFLOPS – number of millions floating point operations per 

second 

MFLOPS(A)= nflp_op(A)/(TU_CPU(A) •106) 

TU_CPU(A) – user time CPU for instruction A 

nflp_op(A) – number of floating point instructions A 

MFLOPS – does not distinguish different floating point 

operations (e.g. sum vs square root), however it is 

convenient for comparing various versions of the program 

implementation of the same computing algorithm. 



CPU time 
Taking into account memory operations: 

TU_CPU(A) = (ncycle(A)+nmm_cycle(A))•tcycle 

nmm_cycles(A) = nread_cycles(A) + nwrite_cycles(A) 

nread_cycles(A) = nread_op(A)•rread_miss_rate(A)•nmiss_cycle 

TU_CPU(A) = ninstr(A)•[CPI (A) + nrw_op(A) •rmiss_rate(A)• 

nmiss_cycle] •tcycle 

CPI(A) - clock cycles per instruction A 

Average access time to memory: 

tread_access(A) = tread_hit + rread_miss_rate(A) •tread_miss 

Further consideration can be done for different levels of cache 
memories. 



Measures of efficiency of parallel 

programs 

Tp(n) – execution time of parallel program of 

size n on p processors = time from the start 

till the end of all tasks running on all 

processors, containing: 

– Time of local computation 

– Time of data exchange between processors 

– Synchronization time 

– Waiting time 

 



Measures of efficiency of parallel 

programs 
Cost of execution parallel program 

 Cp(n)=pTp(n) – measure of total work 

Cost is optimal when: Cp(n)=T1(n) (time of the 
fastest sequential program) 

Speedup= execution time of sequential program 
/execution time of parallel program 

Efficiency = cost of sequential program /cost of 
parallel program 
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In practice superlinear speedup can be observed (Sp>p)  



Amdahl’s and Gustafsion’s laws 

Amdahl’s law: 

 If for some problem, serial part is s (0≤s≤1), and 1-s is 
realized parallelly on p processes then: 
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For example if s>10% then Sp < 10 

Gustafson’s law: Speedup is scalable for enough big 

problems: 
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ts – time of serial part, tp – time of parallel part 



WIKIPEDIA – a driving metaphor 

Amdahl’s  law: 

• Suppose a car is traveling between two cities 60 miles 
apart, and has already spent one hour traveling half the 
distance at 30 mph. No matter how fast you drive the last 
half, it is impossible to achieve 90 mph average before 
reaching the second city. Since it has already taken you 1 
hour and you only have a distance of 60 miles total; going 
infinitely fast you would only achieve 60 mph. 

Gustafson’s law: 

• Suppose a car has already been traveling for some time at 
less than 90mph. Given enough time and distance to travel, 
the car's average speed can always eventually reach 
90mph, no matter how long or how slowly it has already 
traveled. For example, if the car spent one hour at 30 mph, 
it could achieve this by driving at 120 mph for two 
additional hours, or at 150 mph for an hour, and so on. 



Scalability 
Algorithm is scalable if its efficiency is of constant order 

along with the increase of the number of processors 

i.e. Ep = O(1) gdy p→∞ 

Example: summing is not scalable 
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Parallel efficiency 

• Efficiency: effectiveness of parallel algorithm in 
comaprison with serial processing 

• Load balancing: distribution of tasks among 
processors 

• Concurrency: set of processors functioning 
simultaneously 

• Overhead: additional work not existing in 
sequential algorithm 

Efficiency is maximal when: load balancing and 
concurrency are maximal and overhead is minimal 



Efficiency and scalability 

Execution time = (total work)/(velocity) 

– sequential: T1=W1/V(M)  

– parallel: Tp=Wp/(pV(M/p))   

W–work, M-memory, V-velocity (flops) 

Parallel overhead: Wp-W1 

W1 is a function W1(n), where parameter n 
characterizes the problem, assuming  

W1(n)-EWp(n,p)=0 for some constant E, this 
dependency defines (implicitly) n as a function 
of p. 



Efficiency and scalability 

Dependency W1(n)=EWp(n,p), defines n(p). 
n defines the characteristics of the problem – for example 

multiplying two matrices leads to W1(n)=O(n3) 
 

W1(n(p)) - isoefficiency function. 
 

In case of summation: 

W1 = EWp       n~E(n + p log p), hence: 

n =Θ(p log p) ,   W1(n,p) = Θ(p log p) 

i.e. if the size icreases like ~ p log p, then the algorithm is 
scalable, however execution time grows as log p.  

 



Efficiency and scalability 
 

In general: Tp = W1/(pE) is constant if isoefficiency 
function is of order Θ(p), otherwise Tp grows as p 
grows. 

 
Isoefficiency of order O(p), O(plogp), O(p3/2) is 

desirable, while isoefficiency > O(p2) means weak 
sclability because, Tp grows faster than linear with the 
increased number of processors p. 

 
Isoefficiency of order O(p) for many problems cannot be 

reached. 



1-D transport equation: 

Grid: 

Integrating over 

and using trapezoidal rule for integrals we get („box scheme”)”: 

Example: linear transport equation 



System of linear equations 



System with tridiagonal matrix 

Thomas algorithm, progonka – version of Gauss elimination 

Solution is based on the formulas: 

𝑥𝑗 =∝𝑗 𝑥𝑗+1+𝛽𝑗  

∝𝑗= −
𝑏𝑗 

𝑎𝑗 ∝𝑗+1 +𝑑𝑗 
       ∝0= −

𝑏0 

𝑑0 
 

𝛽𝑗 = −
𝑓𝑗−𝛽𝑗−1 

𝑎𝑗∝𝑗−1+𝑑𝑗 
       𝛽0=

𝑓0 
𝑑0 

 

 

𝑥𝑀 = 𝛽𝑀 
Algorithm is essentially sequential with complexity O(M) 

𝑥0
𝑥1
… .
𝑥𝑀

=

𝑓0
𝑓1
… .
𝑓𝑀

 



System with tridiagonal matrix 

M=lp(R+1)-1 

lp- number of processors 

As, Ds, Bs ~(R+1)x(R+1) 

ei - versor 

𝑋𝑠 = 



System with tridiagonal matrix 

Even unknowns 

Odd unknowns 

By multipying first lp -1 equations by eT
R and last 

lp -1 by eT
0 we get Schur system of size 2(lp-1) 



Algorithm (S. Bondelli) 

1. Finding 

done by solving system with tridiagonal matrices Ds 

and right hand sides: Fs, e0, eR.  Typical Thomas 

algorithm can be used („progonka”). 

2. Exchange of information such that in each 

processor all the coefficients and right hand sides are 

available (MPI_Allgather). 

3. In each processor Schur system is solved 

𝑋𝑠  and  vectors Vs, Ws. This can be  



Algorithm (S. Bondelli) 

4. Then the following equations produces solution, 

such that at processor k  Xk is available. 

As all the steps in the algorithm have complexity linear 

with respect to the size of the problem and number of  

processors, then isoefficiency is of order O(p). 



Some important differential equations 

• Transport equation: 

 
𝜕𝑐

𝜕𝑡
= 𝛻 ∙ 𝐷𝛻𝑐 − 𝛻 ∙ 𝑣 𝑐 + 𝑅,   

where 𝑣  - velocity, R – source, c – variable of interest 

• Conservation law: 

𝜕𝑢

𝜕𝑡
+ 𝑑𝑖𝑣 𝐹 𝑢 = 0  

• Navier-Stokes equations:  
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑢 − ∆𝑢 = −𝛻𝑝 

𝑑𝑖𝑣𝑢 = 0 

• Heat equation: 
𝜕𝑢

𝜕𝑡
= 𝛻 ∙ 𝐷𝛻𝑢 + 𝑓(𝑥, 𝑡) 

 

 

 



Application to heat equation 

ADI – Alternative Direction Implicit method  Peaceman-

Rachfort for 2D heat equation 

•
𝑦𝑖,𝑗
𝑛+1/2

−𝑦𝑖,𝑗
𝑛

𝜏/2
=
𝐷

2
{𝛿𝑥
2𝑦
𝑖,𝑗

𝑛+
1

2 + 𝛿𝑦
2𝑦𝑖,𝑗
𝑛 } 

•
𝑦𝑖,𝑗
𝑛+1−𝑦𝑖,𝑗

𝑛

𝜏/2
=
𝐷

2
{𝛿𝑥
2𝑦
𝑖,𝑗

𝑛+
1

2 + 𝛿𝑦
2𝑦𝑖,𝑗
𝑛+1} 

where x, y = finite differences with respect to x,y. 

This leads to the system of linear equations with 

tridiagonal matrices. Extension to 3D is straightforward. 

This concept can be generalized for some „splitting” 

numerical schemes.  

 



Splitting techniques 

• Example: 2D transport equation: 

 

 

• Example: 2D convection-diffusion equation: 

 

Transport equation 

for u1, u2 

Heat equation 

for u3, u4 



The Stokes problem 
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,:

The Stokes equation describes the motion of an 

incompressible viscous flow in n-dimensional 

domain (n=2,3): find u – velocity and p – pressure 

such that: 

Applying finite element, finite difference or finite volume method, 

finally we get the system of linear equations with specific form.  



Algebraic system 

Matrix Ah is symmetric positive definite 

Matrix Bh
T has full column rank 

Matrix BhAh
-1Bh

T is symmetric positive definite 

Matrix S is symmetric invertible non-definite  

(it has N positive and M negative eigenvalues) 

 

Instead of solving primary problem with matrix S it’s better to 

solve the following dual problem: 
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Primal problem: 



Variational formulation of 

stationary Navier-Stokes equations 

Multiplying the first NS equation by smooth function v vanishing on  

boundary, integrating by parts, and multiplying the second NS equation  

by some function q we get formulation of the following form: 



Approximation of stationary Navier-

Stokes equations  
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Approximation using the iteration of the Stokes problem 
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Schur complement 

𝑀 =
𝐴  𝐵
𝐶  𝐷

, M~(p+q)x(p+q), A~pxp, D~qxq 

Schur complement: A-BD-1C ~pxp 
𝐴𝑥 +  𝐵𝑦 = 𝑓
𝐶𝑥 +  𝐷𝑦 = 𝑔

 

If both D and Schur complement can be inverted, 

then the problem is reduced to invert two 

matrices of dimensions qxq and pxp respectively 

(A-BD-1C)x=f-BD-1g 



Conclusions 

• There is no straightforward way to transfer the 

code from sequential to parallel form 

• Typically new numerical algorithms have to be 

developed to efficiently perform simulations 

on computing cluster 

• It is worth to start with simpler problems, 

which can be further utilised for more complex 

ones - splitting techniques can be then applied 


