Analysis of the possibility of using supercritical CO₂ in high temperature reactors

NATIONAL CENTRE FOR NUCLEAR RESEARCH Ś W I E R K

Michał Komorowicz

Division of Nuclear Energy and Environmental Studies Michał.Komorowicz@ncbj.gov.pl

Rzeczpospolita Polska Unia Europejska Europejski Fundusz Społeczny

New reactor concepts and safety analyses for the Polish Nuclear Energy Program POWR.03.02.00-00.1005/17

- Physical properties of the supercritical fluid
- Comparison of Brayton, Rankin and supercritical cycles
- Selection of technology and configuration
- Turbine and heat exchangers
- Direct cycle discussion
- Summary

Physical properties of the supercritical fluid Swierk

ohio.edu/mechanical/thermo/property_tables/CO2/ph_CO2.html

M. Komorowicz, Analysis of the possibility of using supercritical CO2 in HTR

7.01.2020

Physical properties of the supercritical fluid SWIERK

Physical properties of the supercritical fluid so sources

0.13 7,5 MPa 0.12 0.11 8 MPa 8,5 MPa 0.05 0.04 0.03 30 35 40 45 50 Temperature [C]

Thermal conductivity

- Heat exchange improved in low temperature HX
- And in precooler

Physical properties of the supercritical fluid 🔬

Phase change

Large losses due to compression

wiley.com/college/moran/CL_0471465704_S/ thermonet/docs/user/index.html nuclear-power.net

No phase transition

- Reduced compressor work
- **Obligatory high** recuperation
- Better low temp. recuperation

7.01.2020

[1]Review of supercritical CO2 power cycle technology and current status of research and development, 2015

Scale dependent application of various cycle elements

SCO2 Power Cycle Symposium, 2011

7.01.2020

Dostal 2004

7.01.2020

Cycle configuration

7.01.2020

Cycle configuration

7.01.2020

[1]

Modified recuperation cycle with precompression

Heat exchanger proposition – s-fined PCHE 🔬

- Maintains heat exchange rate but reduces pressure losses by up to six times
- Uses the entire space more efficiently

How New Microchannel Heat Exchanger Reduced Pressure Drop to 1/6, MCHE 2011

NCBJ Świerk

Super alloys based on nickel (\sim 60%) and chromium (\sim 20%):

- 230 at 900°C can withstand up to 10,3 MPa (with tungsten)
- C617 at 900°C can withstand up to 12,4 MPa
- 282
- 740
- 625

Potential moderator: Beryllia (BaO)

Direct cycle discussion

de.nucleopedia.org/wiki/Generation_IV

7.01.2020

- Significantly increase performance and reduce the amount of elements and resources
- Requires complete change of materials used
- The circuits would be connected directly
- Requires a larger reactor
- Water ingress would cause hydrogen formation, which would have catastrophic effects
- The gas carries dust, activates and undergoes radolysis

TRISO coating

Medium temperature carbon dioxide gas turbine reactor, TIT 2003

- Increasing the lower pressure may partially compensate for the losses due to the higher temperature
- Requires significant changes in cycle operation and special heat exchangers with a controlled work surface
- It is more profitable than cooling towers for water-using power plants
- Makes it possible to build a power plant in any area, even fully built-up
- The system is dependent on the weather but even in the worst case it will achieve higher efficiency

- Supercritical CO₂ may be the next step in the development of power engeenering
- Technology is relatively new and is not yet properly tested on a larger scale, however after proper development it could be relatively cheap
- Working conditions poses unique technological and material challenges
- Material corrosion and erosion is a significant barrier
- A direct cycle would require a complete change of core materials
- It can be successfully used in many technologies but for lower temperature and pressure

Thank you for attention

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Michał Komorowicz

Division of Nuclear Energy and Environmental Studies Michał.Komorowicz@ncbj.gov.pl

Rzeczpospolita Polska Unia Europejska Europejski Fundusz Społeczny

New reactor concepts and safety analyses for the Polish Nuclear Energy Program POWR.03.02.00-00.1005/17

- [1] Y. AHN, S. J. BAE, M. KIM: Review of supercritical CO2 power cycle technology and current status of research and development, KAIST 2015
- V. Dostal, M.J. Driscoll, P. Hejzlar: A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, MIT-ANP-TR-100, 2004
- Y. Kato, T. Nitawaki, Y.Muto: *Medium temperature carbon dioxide gas turbine reactor*, TIT 2003
- Y. Kato: How New Microchannel Heat Exchanger Reduced Pressure Drop to 1/6, MCHE 2011
- T. M. Conboy, M. D. Carlson: Dry-Cooled Supercritical CO2 Power for Advanced Nuclear Reactors, SNL 2015