

Nuts and Bolts of Monte Carlo Neutron Transport: Overview of algorithms and architecture of SCONE Monte Carlo code

Mikolaj Adam Kowalski

19.11.2019

Engineering - Energy, Fluid dynamics and Turbo-machinery

Monte Carlo Particle Transport

Usual student introduction:

- Model each particle from its "birth" until its "death"
- Simulate physical processes with random numbers
- Statistical estimates of interesting quantities can be obtained
- Very accurate
- Very Computationally Expensive

- Sometimes becomes replacement for reality!
- Ignores mathematical basis for Monte Carlo
- Tendency to treat codes as "black boxes"
- Nice interface of modern MC codes allows to perform calculations without taking all approximations into account

Goal: Provide quick "behind the curtain" overview of Monte Carlo in Reactor Physics Undermine trust in MC results

PART I: Overview of basic Monte Carlo Algorithms and Challenges

PART II: Problem of Neutron Clustering

PART III: SCONE Monte Carlo Code

Not In Equal Proportions

To write a Monte Carlo Code:

- MCNP4 Manual Chapter 2: Most information required to write a MC code
- MCNP4 Manual Appendix F: Specification of ACE format of Nuclear Data

To Learn More:

- Forest Brown, "Fundamentals of Monte Carlo Particle Transport", la-ur-05-4983
- I. Lux and L. Koblinger, "Monte Carlo Particle Transport Methods: Neutron and Photon Calculations"
- L. Devroye, "Non-Uniform Random Variate Generation"

Reactor Physics MC Code Landscape

- Most of the codes are difficult to obtain
- Source Code is rarely available
- Little explanation of the methods in documentation
- Curiously, ALL Monte Carlo Codes are bound to an institution (LANL, Oak Ridge, VTT, CEA etc.)
- Not the case for accelerator physics: Geant4

Functional Decomposition of MC Code

Forrest Brown Functional Decomposition:

T. Adams et al., 'Monte Carlo Application ToolKit (MCATK)', Annals of Nuclear Energy, vol. 82, pp. 41–47, Aug. 2015.

Geometry

- Often explanation is a bit confused
- Every MC code uses CSG, but in a slightly different way

Geometry Responsibilities:

- Find Material at coordinates
- Find distance to next cell
- Domain Boundary and BC

"Universe-Centric" model of geometry:

- Geometry is composed of number of levels
- Each level defined entire space
- Transition between levels are associated with transformations

In "Universe-Centric" view geometry is composed of two orthogonal problems:

- In-Universe representation of space
- Representation of universe-nesting structure

Constructive Solid Geometry

Constructive Solid Geometry:

- Divide space into cells
- Each cell contains:
 - Material
 - Transition to another level

Cell is defined by a Boolean expression of Half-Spaces:

- Intersections most efficient
- Union introduces ambiguity (non-convex, non-compact cells)

Cell-to-cell transitions are a problem

- Need to find cell neighbour
- Floating point arithmetic
- Ambiguity at the surface

Cell neighbour look-up

- Cell based
- Common surface based

Constructive Solid Geometry – What is a surface

Simple surfaces Described with a single equation

- Plane
- Cone
- Sphere
- Cylinder
- Paraboloid

$\bigcirc \setminus$

Only simple surfaces:

- MCNP
- OpenMC

Codes that use body surfaces:

- Serpent
- KENO (?)
- MONK

Source: Serpent Wiki

Body surfaces Cannot be described with single equation

- Box
- Truncated Cylinder
- Cruciform Prism

Body surfaces make geometry definition easier

 Require more sophisticated algorithms (e.g. distance to axis aligned box)

Often Discussion of Geometry Ends Here

Constructive Solid Geometry

Often the arrangement of the universe is not random:

- Pin cell
- Fuel lattice

Special properties of the universe can be used to simplify:

- Cell search
- Distance search
- Neighbour look-up

Universes are Polymorphic (in O-O terminology)

Some codes ignore this and relay on optimisation of generic solutions:

- MCNP
- OpenMC

Some codes employ it:

- Serpent
- SCONE

Open question:

Is it worth paying the price of dynamic dispatch in exchange for simplified universe routines?

Vast amount of Problems can be composed of special-universes only

Graph Representation of Geometry

In SCONE no material information is stored in cell definition Material information is contained in separate structure with the DAG representation

Boundary Conditions

Explicit Treatment

- Explicitly stop particle at the boundary
- Apply reflection or Translation

Co-ordinate Transformation

- Allow particle to leave the geometry
- "Fold" the space by applying reflections and transitions
- Efficient with Delta-Tracking

Nuclear Data

Two types of data are needed for transport

- Reaction Cross-Sections
- 2nd-ary Angle (μ) and Energy Distributions

Cross-Sections

- Stored in lin-lin interpolated table
- Each Nuclide has its own energy grid
- Lot of points needed to capture resonances

2nd-ary Distributions

- Many different formalisms \rightarrow Source of branching
- Most data stored in a table format. Linear/Histogram interpolation
- Some are explicit distributions (e.g. Maxwellian Energy-Spectrum, Delta-probability)
- Some formalisms are rarely used (Watt-fission spectrum → replaced with table)
- <u>Support for all the distributions and their variation is the main challenge in writing a physics</u> section of a MC code

Incident neutron data / JEFF-3.1.1 / U238 / MT=1 : (n,total) / Cross section

ACE Format

Header	Misc. Info: Mass, Temperature etc.				
IZ-AW	Empty Legacy Entry				
NXS	Int[16]: Info about data e.g.Number of energy pointsNumber of precursor groups				
JXS	Int[32]: Pointers to data on XSS e.g.Location of XS data				
XSS	 Real[*]: Table with the data. Stored as real numbers. Most codes use ACE formatted data OpenMC uses HDF5 In near future might be replaced by GNDS Even if is replaced ACE-style pre-processing of data will be used (e.g. μ PDF as table not Legendre Moments) 				

ACE Format

Header		2	6056.21c	55.45440	0 2.58	52E-08 1	2/10/04				
26-Fe-56 from FENDL-2.1(JEFF-3.0) NJOY 99.90 NDS/IAEA Nov2004 mat26								t2631			
			0	Θ.	Θ	0.	0	Θ.	Θ	0.	
legacy			Θ	Θ.	Θ	0.	0	Θ.	Θ	0.	
reguer			0	Θ.	Θ	0.	0	Θ.	Θ	0.	
	Ļ	<u> </u>	0	Θ.	Θ	0.	0	Θ.	Θ	0.	
NXS			824565	26056	53036	75	36	326	2	Θ	
	Į		Θ	0	0	Θ	Θ	Θ	0	Θ	
	ſ		1	0	265181	265256	265331	265406	265481	491758	
IXC			491795	652191	652227	692574	745610	745936	746262	749180	
JV2			749506	749506	749832	784730	Θ	784792	0	0	
	l		0	0	0	Θ	Θ	784793	784795	784797	
	ſ		1.000000	000000E-11	1.0312	25000000E-	11 1.0	5859400000	9E-11 1	.0859380000	0E-11
			1.113282	200000E-11	1.140	62500000E-	11 1.1	679690000	9E-11 1	.1953130000	0E-11
			1.250000	000000E-11	1.2812	25000000E-	11 1.3	1250000000	9E-11 1	.3437500000	0E-11
			1.375000	000000E-11	1.437	50000000E-	11 1.5	000000000000	9E-11 1	.5625000000	0E-11
VCC			1.625000	000000E-11	1.687	50000000E-	11 1.7	500000000	9E-11 1	.8125000000	0E-11
×33			1.875000	000000E-11	1.937	50000000E-	11 2.0	000000000000	9E-11 2	.0937500000	0E-11
			2.187500	000000E-11	2.281	25000000E-	11 2.3	7500000000	9E-11 2	.4687500000	0E-11
			2.562500	000000E-11	2.6562	25000000E-	11 2.7	5000000000	9E-11 2	.8437500000	0E-11
			2.937500	000000E-11	3.0312	25000000E-	11 3.1	2500000000	9E-11 3	.2187500000	0E-11
	l		3.312500	000000E-11	3.4062	25000000E-	11 3.5	00000000000	9E-11 3	.5937500000	0E-11

Accessing Cross-Sections

Cross-Section Access is the main bottleneck in MC Calculations

- Can take as much as <u>85% of runtime</u> (based on OpenMC)!
- Monte Carlo Code is effectively a glorified table interpolator!

Evaluating Macroscopic XSS requires loop over many nuclides

- Interpolated Macroscopic XSS need to be cached
- In burned core can have 100s of nuclides
- Energy grid search acceleration is necessary to avoid 100s of binary searches

Unified Energy Grid and Hashing

Unified Energy Grid (Serpent)

- 1. Create Union of energy grids of all nuclides
- 2. Interpolate all XSs on the new grid
- 3. Only single energy grid search is necessary
- 4. Allows to pre-calculate macroscopic XSS

Energy Grid Hasing (MCNP6, OpenMC)

- 1. Divide energy grid into uniform bins (in log of energy)
- 2. For each nuclide find index of energy location just before a bin
- 3. To access XS find a bin with arithmetic operation
- 4. Perform short linear search from the stored index for a nuclide
- Unified energy grid consumes a lot of memory (1.6 GB for depleted core problem)
- Offers significant acceleration (~53% for depleted core problem)
- Hashing gives ~24% speed-up for 6.9 MB
- Trade-off between performance and memory usage
- Most Monte Carlo Problems are limited by memory

J. A. Walsh, P. K. Romano, B. Forget, and K. S. Smith, 'Optimizations of the energy grid search algorithm in continuous-energy Monte Carlo particle transport codes', *Computer Physics Communications*, vol. 196, pp. 134–142, Nov. 2015.

Neutron Clustering

There are no critical problems!

- Every problem requires renormalisation of population
- On average each fission particle causes 1 fission for next generation
- "Gambler Ruin" phenomena → Expectancy = 1, but variance increases with generations
- Eventually neutron families die-out

For most problems:

Family extinction rate > Diffusion through the domain

Results in particle clustering & Failure of Source Convergence

E. Dumonteil et al., 'Particle clustering in Monte Carlo criticality simulations', Annals of Nuclear Energy, vol. 63, pp. 612–618, Jan. 2014.

Eigenvalue Problems

Clustering is a Physical Phenomena Attempts are made to detect it in ZPR

Particle Clustering

- Clustering results in unreliable statistical error estimates
- Necessary to ensure that cycle population is large enough
- Every problem will eventually experience clustering

Neutron Production in lattice of 102 PWR pins 3 Independent MC Runs

No reliable metrics to detect clustering were created Can look at the variance in Centre-Of-Mass of population as some indication

What is SCONE

Stochastic Calculator Of Neutron Transport Equation

- Particle Transport Monte Carlo Code for Nuclear Engineering Applications
- Academic Focus: Target audience → Master's and PhD Students
- Designed for modification: Object-Orientation, well-defined abstractions
- Use: Teaching, New Algorithms Prototyping
- Prioritise modifiability over performance

Language: Fortran 2008

- Easy to learn; Informative Compiler Errors; Easy to read standard
- Offers good performance
- Well-established (generally supported, OpenMP, OpenACC etc.)

Original Motivation: Variable Fidelity Calculations

Motivation:

- Computational resources are a limited resource
- Accurate results are not required everywhere in a problem
 - Temperature margin evaluation

 → accuracy matters for few pins
 close to the limit
- In general, reduction of fidelity accelerates calculation

Question:

Is it possible to accelerate MC by using lower fidelity in regions where accuracy is less important?

Multi-Group Monte Carlo:

- ~4x faster execution speed then CE
- Consumes less memory
- Easier to vectorise (thus optimise for GPUs and Intel AVX etc.)

CE Region	
MG Region	

Is there a need for SCONE?

Why don't just use OpenMC?

- Transport() function is not virtual \rightarrow There is ONE way to do the calculation
- From architecture (it seems):
 - Priority of OpenMC: Fast & Scalable Calculations of Reactor Problems
 - Not a priority of OpenMC: Supporting implementation of "wacky" (often not very useful in practice) ideas
 - E.G. Does not support delta-tracking in its current implementation
- NOTE: Not a criticism of OpenMC, but an observation that its priorities seems to be much different from SCONE's

How does SCONE fit?:

- Goal: Challenging to use, Easy to modify, Somewhat slow to execute
- Expose the user to some gritty details of MC methods in input files (similarly to OpenFOAM)
- Allow maximum flexibility in defining calculation sequences
- Define clear abstraction for interaction with key components (Nuclear Data, Geometry, Tallies).
- Try to optimise for speed of : *Idea* → *Prototype Implementation;* **not** *Input* → *Result*

Alternative High Level Decomposition

Design of Tallies

- Accept events reports
- Return some of the results
- Concentrate relevant code into single class

In order to create new result estimator it is sufficient to write just a tallyClerk No modification elsewhere in the code is required Little knowledge about the inner workings of other sections is needed

Student Involvement

MEng Project to implement Photoatomic Photon Transport

- Very successful in short time (6 months)
- Showed that it is possible for Master's students to contribute to the development
- Positive feedback from the student on SCONE

Lessons learned:

- Need for Code Reviews from the start
 - Students tend to stay quiet
 - Can spend a lot of time struggling with problems easy to correct if they ask for help
 - Necessary to enforce good style
- Need for detailed step-by-step tutorials to the SCONE
 - Save time for the supervisors

More Projects Offered to Students

Comparison against Serpent

Benchmarks

Jezabel

Metallic Pu Sphere

Without:

- Unresolved resonances tables
- S(α,β) tables

Popsy

Metalic Pu Sphere with natural U reflector

C5G7 based PWR MOX assembly

Heterogeneous arrangement of:

- 4.3wt%
- 7.0wt%
- 8.3wt%

MOX pins with guide tubes

Serpent opt 4; set gcu -1

Comparison against Serpent

Comparison of runtime & criticality between SCONE and Serpent							
Case	SCONE k-eff	SCONE Runtime [s]	Serpent k-eff	Serpent Runtime [s]			
Jezebel	1.0015±9pcm	257	0.99999± 10pcm	765			
Popsy	1.00307±11pcm	3250	1.00376± 11pcm	5036			
MOX	1.19871±6pcm	9367	1.19872± 6pcm	7091			

Error in flux spectrum in fast benchmark cases. Grey region represents extent of 2σ

Good agreement in terms of speed & accuracy

Future of SCONE

Preparing for open source release:

- In near future (planned February 2020)
- Need to clean-up repository
- Need to choose a licence (MIT? GPL3?)

Further Work:

- Parallelisation
- Missing Physics (S(α,β), Unresolved Resonances)
- Investigate advanced calculations
- Continuously improve the design

Problems:

- Lack of menpower (It's just me!)
- Patchy general documentation
- Lack of funding for future development

Some interest in collaboration:

University of Bath Mathematic Dept.

Happy to share access to the repositry. Send me an e-mail: <u>mak60@cam.ac.uk</u>

><((((*> ><((((*> ><((((*> ><((((*> ><((((*>

Compiler Info : GCC version 6.5.0

// READING CSG GEOMETRY REPRESENTATION /\/\ 4 surfaces Building DONE! 8 cells Building DONE! Building 8 universes DONE! CHECKING GEOMETRY: Recursion in definition - NOT PRESENT! Nesting level - FINE! Outside below root - NOT PRESENT! SEOMETRY INFORMATION: Nesting Levels: 3 Unique Cells: 1603 Unique Material Cells: 1202 Nested Universes: 401 Unused Universes by ID: 20 21 22 23 30 Boundary Surface ID: 1 Boundary Surface Type: squareCylinder Boundary Conditions: 1 1 2 2 0 0 BUILD FILL ARRAY: Fill Array - DONE! FINISHED READING GEOMETRY \/\/ ilding: 8016.03 with index: 1 uilding: 92235.03 with index: 2 uilding: 5010.03 with index: 3

Thank you for your attention!

